• Title/Summary/Keyword: ZnO gas sensor

Search Result 125, Processing Time 0.031 seconds

The Detection Characterization of NOX Gas Using the MWCNT/ZnO Composite Film Gas Sensors by Heat Treatment (열처리에 따른 MWCNT/ZnO 복합체 필름 가스센서의 NOX 가스 검출 특성)

  • Kim, Hyun-Soo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.521-526
    • /
    • 2018
  • In particular, gas sensors require characteristics such as high speed, sensitivity, and selectivity. In this study, we fabricated a $NO_X$ gas sensor by using a multi-walled carbon nanotube (MWCNT)/zinc oxide (ZnO) composite film. The fabricated MWCNT/ZnO gas sensor was then treated by a $450^{\circ}C$ temperature process to increase its detection sensitivity for NOx gas. We compared the detection characteristics of a ZnO film gas sensor, MWCNT film gas sensor, and the MWCNT/ZnO composited film gas sensor with and without the heat-treatment process. The fabricated gas sensors were used to detect $NO_X$ gas at different concentrations. The gas sensor absorbed $NO_X$ gas molecules, exhibiting increased sensitivity. The sensitivity of the gas sensor was increased by increasing the gas concentration. Additionally, while changing the temperature inside the chamber for the MWCNT/ZnO composite film gas sensor, we obtained its sensitivity for detecting $NO_X$ gas. Compared with ZnO, the MWCNT film gas sensor is excellent for detecting $NO_X$ gas. From the experimental results, we confirmed the enhanced gas sensor sensing mechanism. The increased effect by electronic interaction between the MWCNT and ZnO films contributes to the improved sensor performance.

CO Gas Sensing Characteristic of ZnO Thin Film/Nanowire Based on p-type 4H-SiC Substrate at 300℃ (P형 4H-SiC 기판에 형성된 ZnO 박막/나노선 가스 센서의 300℃에서 CO 가스 감지 특성)

  • Kim, Ik-Ju;Oh, Byung-Hoon;Lee, Jung-Ho;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • ZnO thin films were deposited on p-type 4H-SiC substrate by pulsed laser deposition. ZnO nanowires were formed on p-type 4H-SiC substrate by furnace. Ti/Au electrodes were deposited on ZnO thin film/SiC and ZnO nanowire/SiC structures, respectively. Structural and crystallographical properties of the fabricated ZnO thin film/SiC and ZnO nanowire/SiC structures were investigated by field emission scanning electron microscope and X-ray diffraction. In this work, resistance and sensitivity of ZnO thin film/SiC gas sensor and ZnO nanowire/SiC gas sensor were measured at $300^{\circ}C$ with various CO gas concentrations (0%, 90%, 70%, and 50%). Resistance of gas sensor decreases at CO gas atmosphere. Sensitivity of ZnO nanowire/SiC gas sensor is twice as big as sensitivity of ZnO thin film/SiC gas sensor.

Hydrogen sulfide gas sensing mechanism study of ZnO nanostructure and improvement of sensing property by surface modification

  • Kim, Jae-Hyeon;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.450-450
    • /
    • 2011
  • This study reports the hydrogen sulfide gas sensing properties of ZnO nanorods bundle and the investigation of gas sensing mechanism. Also the improvement of sensing properties was also studied through the application of ZnO heterstructured nanorods. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and ZnO nano-heterostructures were prepared by sonochemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. The gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. In order to improve the gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by deposition of CuO, Au on the ZnO nanorods bundle. These heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with target gas.

  • PDF

The Analysis of Mechanism for the Gas Sensor of MWCNT/ZnO Composites Film Using the NOX Gas Detection Characteristics (NOX 가스 검출 특성을 이용한 MWCNT/ZnO 복합체 필름 가스 센서의 메커니즘 분석)

  • Son, Ju-Hyung;Kim, Hyun-Soo;Park, Yong-Seo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.188-192
    • /
    • 2018
  • In this study, we fabricated an $NO_X$ gas sensor using a composite film of multi-walled carbon nanotubes (MWCNT)/zinc oxide (ZnO). Carbon nanotubes (CNTs) show good electronic conductivity and chemical-stability, and zinc oxide (ZnO) is a wide band gap semiconductor with a large exciton binding energy. Gas sensors require characteristics such as high speed, sensitivity, and selectivity. The fabricated gas sensor was used to detect $NO_X$ gas at different $NO_X$ concentrations. The sensitivity of the gas sensor increased with increasing gas concentrations. Additionally, while changing the temperature inside the chamber containing the MWCNT/ZnO gas sensor, we obtained the sensitivity and normalized responses for detecting $NO_X$ gas in comparison to ZnO and MWCNT film gas sensors. From the experimental results, we confirmed that the gas sensor sensing mechanism was enhanced in the composite-film gas-sensor and that the electronic interaction between MWCNT and ZnO contributed to the improved sensor performance.

The Analysis of NOx Gas Detection Characteristics for the Gas Sensor Using the MWCNT/ZnO Composites Film (MWCNT/ZnO 복합체 필름을 이용한 가스센서의 NOx가스 검출 특성 분석)

  • Kim, Hyun-Soo;Lee, Won-Jae;Park, Yong-Seo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.312-316
    • /
    • 2016
  • In this study, we fabricated $NO_x$ gas sensor by using multi-walled carbon nanotubes(MWCNT)/zinc oxide(ZnO) composite film. Carbon nanotubes (CNTs) have good electronic, chemical-stability, and sensitivity characteristics. And zinc oxide (ZnO) is a wide band gap and large exciton binding energy semiconductor. In particular, gas sensors require characteristics such as high speed, sensitivity, and selectivity. The fabricated gas sensor was used to detect $NO_x$ gas for different values of the $NO_x$ gas concentrations. The gas sensor that absorbed$NO_x$ gas molecules showed a increasing in resistance. The sensitivity of the gas sensor was increased by increasing the gas concentrations. Additionally, while changing the temperature inside the chamber for the MWCNT/ZnO composite film gas sensor, we obtained the sensitivity. And the comparison analysis to ZnO film gas sensor for detecting $NO_x$ gas. From the experiment result, we confirmed improvement of $NO_x$ gas detection characteristics using the MWCNT/ZnO composite film.

NO Gas Sensing Properties of ZnO-SWCNT Composites (산화아연-단일벽탄소나노튜브복합체의 일산화질소 감지 특성)

  • Jang, Dong-Mi;Ahn, Se-Yong;Jung, Hyuck;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.623-627
    • /
    • 2010
  • Semiconducting metal oxides have been frequently used as gas sensing materials. While zinc oxide is a popular material for such applications, structures such as nanowires, nanorods and nanotubes, due to their large surface area, are natural candidates for use as gas sensors of higher sensitivity. The compound ZnO has been studied, due to its chemical and thermal stability, for use as an n-type semiconducting gas sensor. ZnO has a large exciton binding energy and a large bandgap energy at room temperature. Also, ZnO is sensitive to toxic and combustible gases. The NO gas properties of zinc oxide-single wall carbon nanotube (ZnO-SWCNT) composites were investigated. Fabrication includes the deposition of porous SWCNTs on thermally oxidized $SiO_2$ substrates followed by sputter deposition of Zn and thermal oxidation at $400^{\circ}C$ in oxygen. The Zn films were controlled to 50 nm thicknesses. The effects of microstructure and gas sensing properties were studied for process optimization through comparison of ZnO-SWCNT composites with ZnO film. The basic sensor response behavior to 10 ppm NO gas were checked at different operation temperatures in the range of $150-300^{\circ}C$. The highest sensor responses were observed at $300^{\circ}C$ in ZnO film and $250^{\circ}C$ in ZnO-SWCNT composites. The ZnO-SWCNT composite sensor showed a sensor response (~1300%) five times higher than that of pure ZnO thin film sensors at an operation temperature of $250^{\circ}C$.

Fabrication of CuO/ZnO Nano-heterostructure by Photochemical Method and Their H2S Gas Sensing Properties

  • Kim, Jae-Hyun;Yong, Ki-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.359-359
    • /
    • 2011
  • This study reports the H2S gas sensing properties of CuO / ZnO nano-hetero structure bundle and the investigation of gas sensing mechanism. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and CuO / ZnO nano-heterostructures were prepared by photo chemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. In order to improve the H2S gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by photo-chemical deposition of CuO on the ZnO nanorods bundle. The furnace type gas sensing system was used to characterize sensing properties with diluted H2S gas (50 ppm) balanced air at various operating temperature up to 500$^{\circ}C$. The H2S gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. Photo-chemically fabricated CuO/ZnO heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with H2S gas.

  • PDF

Effects of metal catalysts on the characteristics of NO sensor using ZnO thin film as sensing material (금속 촉매가 ZnO 박막을 감지물질로 이용한 NO 센서의 특성에 미치는 영향)

  • Chung, Gwiy-Sang;Jeong, Jae-Min
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.58-61
    • /
    • 2010
  • This paper describes the fabrication and characteristics of NO sensor using ZnO thin film by RF magnetron sputter system. The sensitivity, working temperature, and response time of sputtered pure ZnO thin film and added catalysts such as Pt, Pd, Al, Ti on those films were measured and analyzed. The sensitivity of pure ZnO thin film at working temperature of $300^{\circ}C$ is 0.875 in NO gas concentration of 0.046 ppm. At same volume of the gas in chamber, measuring sensitivity of 1.87 at $250^{\circ}C$ was the case of Pt/ZnO thin film. The ZnO thin films added with catalyst materials were showed higher sensitivity, lower working temperature and faster adsorption characteristics to NO gas than pure ZnO thin film.

A comparison between thick-film ZnO and $SnO_2$ gas sensors for CO gas detection (CO 검지용 후막형 ZnO와 $SnO_2$ 가스센서의 비교)

  • Kim, Bong-Hee;Yi, Seung-Hwan;Kang, Hee-Bok;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.209-212
    • /
    • 1991
  • Recently, oxide semiconductor gas sensors consisted of n-type semiconductor materials such as $SnO_2$, ZnO and $Fe_2O_3$ have been widely used to detect reducing gases. The advantage of thick-film technology include the possibility of mass-production and automation, that of integrating the sensing element in a hybrid circuit and that of fuctional trimming of the sensor and/or the circuit. which would enable really interchangeable transducers to be prepared. In this paper, we made ZnO and $SnO_2$ gas sensors and investigated the sensitivity to CO gas. Therefore, we compared a ZnO gas sensor with a $SnO_2$ gas sensor.

  • PDF

Enhanced Hydrogen Gas Sensing Properties of ZnO Nanowires Gas Sensor by Heat Treatment under Oxygen Atmosphere (산소 분위기 열처리에 따른 ZnO 나노선의 상온 영역에서의 수소가스 검출 특성 향상)

  • Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.2
    • /
    • pp.125-130
    • /
    • 2017
  • ZnO nanowires were synthesized and annealed at various temperatures of $500-800^{\circ}C$ in oxygen atmosphere to investigate hydrogen gas sensing properties. The diameter and length of the synthesized ZnO nanowires were approximately 50-100 nm and a few $10s\;{\mu}m$, respectively. $H_2$ gas sensing performance of the ZnO nanowires sensor was measured with electrical resistance changes caused by $H_2$ gas with a concentration of 0.1-2.0%. The response of ZnO nanowires at room temperature to 2.0% $H_2$ gas is found to be two times enhanced by annealing process in $O_2$ atmosphere at $800^{\circ}C$. In the current study, the effect of heat treatment in $O_2$ atmosphere on the gas sensing performance of ZnO nanowires was studied. And the underlying mechanism for the sensing improvement of the ZnO nanowires was also discussed.