• Title/Summary/Keyword: Zr-2.5Nb Pressure Tube

Search Result 46, Processing Time 0.046 seconds

Microstructure and Mechanical Property of Irradiated Zr-2.5Nb Pressure Tube in Wolsong Unit-1

  • 김영숙;안상복;오동준;김성수;정용무
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.241-241
    • /
    • 1999
  • With the aim of assessing the degradation of Zr-2.5Nb pressure tubes operating in the Wolsong unit-1 nuclear power plant, characterization tests are being conducted on irradiated Zr-2.5Nb tubes removed after 10-year operation. The examined tube had been exposed to temperatures ranging from 264 to 306℃ and a neutron fluence of 8.9×$10^{21}$ n/cm²(E>1 MeV) at the maximum. Tensile tests were carried out at temperatures ranging from RT to 300℃. The density of a-type and c-type dislocations was examined on the irradiated Zr-2.5Nb tube using a transmission electron microscope. Neutron irradiation up to 8.9×$10^{21}$ n/cm²(E>1 MeV) yielded an increase in a-type dislocation density of the Zr-2.5Nb pressure tube to 7.5×$10^{14} m^{-2}$, which was highest at the inlet of the tube exposed to the low temperature of 275℃. In contrast, the c-component dislocation density did not change with irradiation, keeping an initial dislocation density of 0.8×$10^{14} m^{-2}$ over the whole length of the tube. As expected, the neutron irradiation increased mechanical strength by about 17-26% in the transverse direction and by 34-39% in the longitudinal direction compared to that of the unirradiated tube at 300℃. The change in the mechanical properties with irradiation is discussed in association with the microstructural change as a function of temperature and neutron fluence.

A Study on Applicability of SP Creep Testing for Measurement of Creep Properties of Zr-2.5Nb Alloy (Zr-2.5Nb 합금의 크리프 물성 측정을 위한 SP 크리프 시험의 적용성에 대한 연구)

  • Park, Tae-Gyu;Ma, Young-Wha;Jeong, Ill-Seok;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.94-101
    • /
    • 2003
  • The pressure tubes made of cold-worked Zr-2.5Nb alloy are subjected to creep deformation during service period resulting in changes to their geometry such as longitudinal elongation, diameter increase and sagging. To evaluate integrity of them, information on the material creep property of the serviced tubes is essential. As one of the methods with which the creep property is directly measured from the serviced components, small punch(SP) creep testing has been considered as a substitute for the conventional uniaxial creep testing. In this study, applicability of the SP creep testing to Zr-2.5Nb pressure tube alloy was studied particularly by measuring the power law creep constants, A, n. The SP creep test has been successfully applied fur other high temperature materials which have isotropic behavior. Since the Zr-2.5Nb alloy has anisotropic property, applicability of the SP creep testing can be limited. Uniaxial creep tests and small punch creep tests were conducted with Zr-2.5Nb pressure tube alloy along with finite element analyses. Creep constants obtained by each test method are compared. It was argued that the SP creep test result gave results reflecting material properties of both directions. But the equations derived in the previous study for isotropic materials need to be modified. Discussions were made fur future research directions for application of the SP creep testing to Zr-2.5Nb tube alloy.

Hydrogen Embrittlement of Zr-2.5Nb PT with Temperature (Zr-2.5Nb 압력관의 온도변화에 따른 수소취화 파괴거동)

  • Oh, Dong-Joon;Ahn, Sang-Bok;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.78-83
    • /
    • 2003
  • The aim of this study is to investigate the effect of hydrogen embrittlement od Zr-2.5Nb CANDU pressure tube. The test were performed at three hydrogen contents for transverse tensile and CCT specimens while the test temperatures were changed (RT to 300$^{\circ}C$). The specimens were directly machined from the tube retaining original curvature using electric discharge machine. Both the transverse tensile and the fracture toughness tests showed the hydrogen embrittlement clearly at RT but this phenomenon was disappeared while the test temperature arrived over 250$^{\circ}C$. From the fracture toughness test, it was found that fracture toughness dJ/da was increased up to 200$^{\circ}C$ and then decreased.

  • PDF

Hydrogen Embrittlement of Zr-2.5Nb Pressure Tube at Room Temperature by Precipitated Hydride (수소화물에 의한 Zr-2.5Nb 압력관의 상온 수소취화 거동)

  • Oh, Dong-Joon;Boo, Myung-Hwan;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.455-463
    • /
    • 2003
  • The aim of this study is to investigate the hydrogen embrittlement of Zr-2.5Nb CANDU pressure tube at room temperature. The transverse tensile and fracture toughness tests were performed at various hydrogen concentrations using transverse tensile specimens and CCT (curved compact tension) specimens. These specimens were directly machined from the pressure tube retaining original curvatures. Based on the results of these tests. the hydrogen embrittlement phenomenon was clearly observed and fracture toughness parameters of Zr-2.5Nb pressure tube materials such as, $K_{J(0.2)}$.$J_{ML}$.dJ/da, were dramatically decreased with the increasement of the hydrogen concentration. From microscopic observation by SEM and TEM, it was also revealed that various shapes dimples, fissures and quasi-cleavage were found at the hydrogen-absorbed materials with hydrides while traditional shape dimples were generally located at the as-received materials Through the comparison of the hydride and fissure lengths with the hydrogen concentration the new evaluation method of hydrogen embrittlement was suggested.

Non-Destructive Detection of Hydride Blister in PHWR Pressure Tube Using an Ultrasonic Velocity Ratio Method

  • Cheong Yong-Moo;Lee Dong-Hoon;Kim Sang-Jae;Kim Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.369-377
    • /
    • 2003
  • Since Zr-2.5Nb pressure tubes have a high risk for the formation of blisters during their operation in pressurized heavy water reactors, there has been a strong incentive to develop a method for the non-destructive detection of blisters grown on the tube surfaces. However, because there is little mismatch in acoustic impedance between the hydride blisters and zirconium matrix, it is not easy to distinguish the boundary between the blister and zirconium matrix with conventional ultrasonic methods. This study has focused on the development of a special ultrasonic method, so called ultrasonic velocity ratio method for a reliable detection of blisters formed on Zr-2.5Nb pressure tubes. Hydride blisters were grown on the outer surface of the Zr-2.5Nb pressure tube using a cold finger attached to a steady state thermal diffusion equipment. To maximize a difference in the ultrasonic velocity in hydride blisters and the zirconium matrix, the ultrasonic velocity ratio of longitudinal wave to shear wave, $V_L/V_S$, has been determined based on the flight time of the longitudinal echo and reflected shear echo from the outer surface of the tubes. The feasibility of the ultrasonic velocity ratio method is confirmed by comparing the contour plots reproduced by this method with those of the blisters grown on the Zr-2.5Nb pressure tubes.

A Study on the Characteristics of Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube with the Heating-up and Heat-treatment (열처리 및 가열방식에 따른 Zr-2.5Nb 압력관의 수소지연균열 특성에 관한 연구)

  • Na, Eun-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.69-73
    • /
    • 2009
  • The objective of this study was to obtain a better understanding of the delayed hydride cracking (DHC) of Zr-2.5Nb alloy. The DHC model has some defects: first, it cannot explain why the DHC velocity (DHCV) becomes constant regardless of an applied stress intensity factor, even though the stress gradient is affected by the applied stress intensity factor at the notch tip. Second, it cannot explain why the DHCV has a strong dependence on the method of approaching the test temperature by a cool-down or a heating-up, even under the same stress gradient, and third, it cannot predict any hydride size effect on the DHC velocity. The DHC tests were conducted on Zr-2.5Nb compact tension specimens with the test temperatures reached by a heating-up method and a cool-down method. Crack velocities were measured in hydrided specimens, which were cooled from solution-treatment temperatures at different rates by being furnace-cooled, water-quenched, and liquid nitrogen-quenched. The resulting hydride size, morphology, and distributions were examined by optical metallography. It was found that fast cooling rates, which produce very finely dispersed hydrides, result in higher crack growth rates. This different DHC behavior of the Zr-2.5Nb tube with the cooling rate after a homogenization treatment is due to the precipitation of the $\gamma$-hydrides only in the water-quenched Zr-2.5Nb tube. This experiment will provide supporting evidence that the terminal solid solubility of a dissolution (TSSD) of $\gamma$-hydrides is higher than that of $\delta$-hydrides.

Fracture Toughness Embrittlement by Hydride in Zr-2.5Nb Pressure Tube (Zr-2.5Nb 압력관의 수화물에 의한 파괴인성 취화에 관한 연구)

  • Oh, Dong-Joan;Ahn, Sang-Bok;Park, Soon-Sam;An, Chang-Yun;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.93-98
    • /
    • 2000
  • Unpredictable failures can occur due to the DHC (delayed hydride cracking) or the degradation of fracture toughness by hydride embrittlement in CANDU pressure tube which can result from the absorption of hydrogen or deuterium in the high temperature coolant. To investigate the hydride embrittlement of CANDU Zr-2.5Nb pressure tube, the transverse tensile test and the fracture toughness test were performed from room temperature to $300^{\circ}C$ using three different specimens which have an AR (As Received), 100, and 200 ppm hydrogen. As the amount of absorbed hydrogen was increased, the transverse yield strength and the ultimate tensile strength were also increased. In addition, as the test temperature became higher they were decreased linearly. While, at room temperature, the hydrogenbsorbed specimens represented the embrittlement which resulted in sudden decreasing of fracture toughness, the fracture characteristics became ductile such as AR specimen at high temperatures. Through the observation of fracture surface using SEM, it was found that the stress state of mixed mode could be related to the fissure which was believed to decrease the global fracture toughness.

  • PDF

Formation and Growth of Hydride Blisters in Zr-2.5Nb Pressure Tubes

  • Cheong, Yong-Moo;Gong, Un-Sik;Choo, Ki-Nam;Kim, Sung-Soo;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.192-200
    • /
    • 2001
  • Hydride blisters were formed on the outer surface of Zr-2.5Nb pressure tube by a non- uniform steady thermal diffusion process. A thermal gradient was applied to the pressure tube with a heat bath kept at a temperature of 415$^{\circ}C$ and an aluminum cold finger cooled with flowing water of 15$^{\circ}C$. Optical microscopy and tree-dimensional laser profilometry were used to characterize the hydride blisters with different hydrogen concentrations and thermal diffusion time. Hydride blisters were expected to start at a hydrogen concentration of 30 - 70 ppm and a thermal diffusion time of 4 - 6$\times$10$^{5}$ sec. The hydride blister size increases with higher hydrogen concentrations and longer thermal diffusion time . Some of the samples revealed cracks on the hydride blisters. The ratio of hydride blister depth to height was estimated as approximately 8: 1.

  • PDF

Effect of an Increased Wall Thickness on Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube (Zr-2.5Nb 중수로 압력관의 수소지연파괴에 미치는 압력관 두께의 영향)

  • Jeong, Yong-Hwan;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.226-233
    • /
    • 1995
  • The wall thickness of a pressure tube is increased in order to reduce the probability of failure in a pressure tube of CANDU type reactor. It is presented here that the variation of wall thickness changes stress, hydrogen concentration and delayed hydride cracking in Zr-2.5Nb pressure tube. When the wall thickness is increased from 4.2 mm to 5.2 mm, the stress exerted on the tube and the deuterium taken up during operation are reduced by 19%. Further, the calculated allowable depth of the surface flaw over which delayed hydride cracking(DHC) is susceptible increases by 50%. DHC initiation is controlled by the stress and by the hydrogen concentration in the pressure tube. The results are therefore very significant in such a respect that increased wall thickness may reduce DHC initiation. Ac the wall thickness increases the hydrostatic tension will increase. Its impact on the acceleration of the crack growth rate of DHC deserves further studies.

  • PDF