• 제목/요약/키워드: a bounded control inputs

검색결과 19건 처리시간 0.021초

제한된 제어 입력을 갖는 시스템에 대한 시간 지연 제어기의 설계 (Design of time delay controller for a system with bounded control inputs)

  • 변경석;송재복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.740-743
    • /
    • 1997
  • Reference models are used in many control algorithms for improvement of transient response characteristics. They provide desired trajectories that the plant should follow. Most control systems have bounded control inputs to avoid saturation of the plant. If we design reference models that do not account for limits of control inputs, control performance of the system may be deteriorated. In this paper, therefore, the way of determining variable reference models for TDC(time delay control) technique is proposed. The variable reference model is determined based on the information of bounded control inputs and reference inputs. This proposed method is also verified by application to the position control experiment using the BLDC motor.

  • PDF

제한된 제어 입력을 갖는 시스템에 대한 시간 지연 제어기의 설계 (Design of Time Delay Controller for a System with Bounded Control Inputs)

  • 송재복;변경석
    • 제어로봇시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.166-173
    • /
    • 1999
  • Reference models are used in many control algorithms for improvement of transient response characteristics. They provide desired trajectories that the plant should follow Most control systems have bounded control inputs to avoid saturation of the plant. If we design the reference models that do not account for limits of the control inputs, control performance of the system may be deteriorated. In this paper a new approach of avoiding saturation by varying the reference model for TDC(time delay control) based systems subject to step changes in the reference input. In this scheme, the variable reference model is determined based on the information on control inputs and the size of the step changes in the reference inputs. This scheme was verified by application to the BLDC motor position control system in simulations and experiments. The responses of the TDC with the variable reference model showed better tracking performance than that with the fixed reference model.

  • PDF

로보트 매니퓰레이터의 개선된 견실 및 적응제어기의 설계 (An improved Robust and Adaptive Controller Design for a Robot Manipulator)

  • Park, H.S.;Kim, D.H.
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.20-27
    • /
    • 1994
  • This paper presents a controller design to coordinate a robot manipulator under unknown system parameters and bounded disturbance inputs. To control the motion of the manipulator, an inverse dynamics control scheme is applied. Since parameters of the robot manipulators such as mass and inertia are not perfectly known, the difference between the actual and estimated parameters works as a disturbance force. To identify the unknown parameters, an improved adaptive control algorithm is directly derived from a chosen Lyapunov's function candidate based on the Lyapunov's Second Method. A robust control algorithm is devised to counteract the bounded disturbance inputs such as contact forces and disturbing forces coming from the difference between the actual and the estimated system parameters. Numerical examples are shown using three degree-of-freedom planar arm.

  • PDF

A Global Optimal Sliding-Mode Control for the Minimum Time Trajectory Tracking with Bounded Inputs

  • Choi, Hyeung-sik
    • Journal of Mechanical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.433-440
    • /
    • 2001
  • A new design of the sliding mode control is proposed for the uncertain linear time-varying second order system. The proposed control drives system states to the target point in the minimum time with specified ranges of parametric uncertainties and disturbances. One of the advantages of the proposed control scheme is that the control inputs do not go beyond saturation limits of the actuators. The other advantage is that the minimum arrival time and the acceleration of the second order actuators system can be estimated with given parametric bounds and can be expressed in the closed from; conversely, the designer can select actuators based on the condition of the minimum arrival time to the target point. The superior performance of the proposed control scheme to other sliding mode controllers is validated by computer simulations.

  • PDF

제한된 입력하에서 로보트 매니플레이터의 Pointwise PD 최적 연속경로 제어방 (A Pointwise PD-optimal Control of Robotic Manipulators for Continuous Path with Bounded Inputs)

  • 현웅근;서일홍;서병설;임준홍;김경기
    • 대한전기학회논문지
    • /
    • 제37권3호
    • /
    • pp.186-193
    • /
    • 1988
  • A pointwise PD-optimal control method is proposed for the continuous path control of robot manipulators with bounded inputs. The controller employs the desired acceleration plus PD (proportional and derivative) actions in the Cartesian space. The gain parameters of the controller are adjusted so that the Euclidean norm of the deviation between the actual and desired accelerations is minimized subject to the constraints of bounded input torques and the system guarantees negative feedback. To show the Validities of the proposed mithods, computer simulations are performed for a SCARA type robot.

  • PDF

제어신호가 제한된 모델기준제어를 위한 가변기준모델 (Variable Reference Model for Model Reference control Subject to Bounded Control Signals)

  • 변경석;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.241-247
    • /
    • 2000
  • The reference model of an MRC (model reference control) provides the desired trajectory a plant should follow and thus the design of a reference model has a significant effect on control performance. In most control systems control input to a plant has some bounds and it is preferable to make use of as large control inputs as possible within the range of no saturation. In this paper a new approach of selecting the reference model is proposed for bounded control inputs. Design variables of the reference model are determined in such a way that maximizes the performance index within the range of no saturation. Moreover this variable reference model is regularly updated during control. This scheme is verified by application to the servo motor position control system in various simulations. The responses of the MRC with a variable reference model show better tracking performance than that with a fixed reference mode. Moreover by adjusting the update interval of the reference model the control performance can be further improved.

  • PDF

로봇 매니퓰레이터의 포화요소를 갖는 퍼지견실 제어 (A Fuzzy Robust Controller with Saturation for Robot Manipulators)

  • Park, H.S.
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.104-109
    • /
    • 1997
  • A robust controller design to corrdinate a robot manipulator under unknown system parameters and bounded disturbance inputs is presented in this paper. Generally, robust controllers require high input torque so that they may face input saturation in actual application due to the power limitation of the actuator. To solve this problem, an improved robust controller with saturated input torque using a fuzzy logic control is proposed. Numerical examples are shown to validate the proposed controller using two degree-of-freedom planar arm.

  • PDF

로보트 매니플레이터의 개선된 견실 및 적응제어기의 설계 (An improved robust and adaptive controller design for a robot manipulator)

  • 최형식;김두형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.156-160
    • /
    • 1993
  • This paper presents a controller design to coordinate a robot manipulator under unknown system parameters and bounded disturbance inputs. To control the motion of the manipulator, an inverse dynamics control scheme is applied. Since parameters of the robot manipulators such as mass and inertia are not perfectly known, the difference between the actual and estimated parameters works as a disturbance force. To identify the unknown parameters, an inproved adaptive control algorithm is directly derived from a chosen Lyapunov's function candidate based on the Lyapunov's Second Method. A robust control algorithm is devised to counteract the bounded disturbance inputs such as contact forces and disturbing force coming from the difference between th actual and the estimated system parameters. Numerical examples are shown using three degree-of-freedom planar arm.

  • PDF

Driving of the Ball Screw Actuator Using a Global Sliding Mode Control with Bounded Inputs

  • Choi Hyeung-Sik;Son Joung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.758-768
    • /
    • 2005
  • The ball screw actuated by the electric motor is widely used as an essential actuator for driving the mechanical system by virtue of accuracy and force transmission capability. In this paper, a design of the global sliding mode control is presented to drive the ball screw actuator along the minimum time trajectory, In the proposed control scheme, if the ranges of parametric uncertainties and torque limits of the system are specified, the arrival time of the load along the minimum time trajectory can be estimated. Also, the arriving time at the reference input and the maximum acceleration are expressed in a closed form solution. Conversely, the capacity of a ball screw actuator including the motor can be easily designed if the external load and its transportation time are specified. The superior performance of the proposed control scheme and analysis is validated by the computer simulation and experiments comparing with other sliding mode controllers.

제조공정자동화를 위한 다관절 아암의 정밀위치제어에 관한 연구 (A Study on Precise Position Control of Articulated Arm for Manufacturing Process Automation)

  • 박인만;구영목;조상영;양준석
    • 한국산업융합학회 논문집
    • /
    • 제18권3호
    • /
    • pp.181-190
    • /
    • 2015
  • This paper presents a new approach to control the position of robot arm in workspace a robot manipulator under unknown system parameters and bounded disturbance inputs. To control the motion of the manipulator, an inverse dynamics control scheme was applied. Since parameters of the robot arm such as mass and inertia are not perfectly known, the difference between the actual and estimated parameters was considered as a external disturbance force. To identify the known parameters, an improved robust control algorithm is directly derived from the Lyapunov's Second Method. A robust control algorithm is devised to counteract the bounded disturbance inputs such as contact forces and disturbing forces coming from the difference between the actual and the estimated system parameters. Numerical examples are shown using SCARA arm with four joints.