• Title/Summary/Keyword: a ground mass strength

Search Result 104, Processing Time 0.031 seconds

A Failure of disturbed natural-slope ground caused by cutting slope (절토에 의한 상부자연지반의 붕괴 특성 연구)

  • Nah, Kwang-Hee;Chang, Buhm-Soo;Shin, Chang-Gun;Kim, Yong-Soo;Choi, Yong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.629-634
    • /
    • 2004
  • When it was a localized torrential downpour last year, a natural-slope fell down above a cut-slope. They were caused that stress was opened by cutting slope, ground water level rose quickly and a ground mass strength fell etc. So volume of ground mass increase because of that reasons, finally the disturbed ground was collapse. Therefore I suggest that safety of a natural-slope is a consideration, when a cut-slope is made by cutting ground.

  • PDF

A Study on the Geotechnical Charateristics of Corestone Ground Mass (핵석 지반의 공학적 특성 연구)

  • Lee, Su-Gon;Kim, Dong-Eun;Lee, Chun-Young;Kim, Jae-Heun;Yang, Hong-Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.1
    • /
    • pp.68-76
    • /
    • 2004
  • Corestone ground mass has complicated characteristics as it is made up of hard and stiff corestone in a relatively weak and soft matrix. Model corestone ground mass whichis physically identical with the stiff corestone in weak matrix were tested in uniaxial compression. The tests showthat the increase of the corestone proportion brought the gradual increase of the elastic modulus as well. The ground mass was weaker when the corestone proportion was low while it was stronger in higher corestone proportion. The size of the corestone had no influence on the strength and elastic modulus as long as the proportion of the corestone remains same.

Prediction of Rock Mass Strength Ahead of Tunnel Face Using Hydraulic Drilling Data (천공데이터를 이용한 터널 굴진면 전방 암반강도 예측)

  • Kim, Kwang-Yeom;Kim, Sung-Kwon;Kim, Chang-Yong;Kim, Kwang-Sik
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.479-489
    • /
    • 2009
  • Appropriate investigation of ground condition near excavation face in tunnelling is an inevitable process for safe and economical construction. In this study mechanical parameters from drilling process for blasting were investigated for the purpose of predicting the ground condition, especially rock mass strength, ahead of tunnel face. Rock mass strength is one of the most important factors for classification of rock mass and making a decision of support type in underground construction. Several rock specimens which are considered homogeneous and having different strength values respectively were tested by hydraulic drill machines generally used. As a result, penetration rate is fairly related with rock mass strength among drilling parameters. It is also found that penetration rate increases along with the higher impact pressure even under same rock strength condition. It is finally suggested that new prediction method for rock mass strength using percussive pressure and penetration rate during drilling work can be utilized well in construction site.

Stability Analysis for Ground Uplift in Underground Storage Caverns for High Pressurized Gas using Hoek-Brown Strength Criterion and Geological Strength Index (GSI) (Hoek-Brown 강도기준식 및 암질강도지수를 이용한 고압 유체 지하저장 공동의 융기에 대한 안정성 평가)

  • Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.289-296
    • /
    • 2014
  • A simple analytical approach for stability assessment of underground storage caverns against ground uplift of overburden rock above the rock caverns for high pressurized fluid such as compressed air energy storage (CAES) and compressed natural gas (CNG) was developed. In the developed approach, we assumed that failure plane of the overburden is straight upward to ground surface, and factor of safety can be calculated from a limit equilibrium analysis in terms of this cylindrical shape failure model. The frictional resisting force on the failure plane was estimated by Hoek-Brown strength criterion which replaces with Mohr-Coulomb criterion such that both intact rock strength and rock mass conditions can be considered in the current approach. We carried out a parametric sensitivity analysis of strength parameters under various rock mass conditions and demonstrated that the factor of safety againt ground uplift was more sensitive to Mohr-Coulomb strength criterion rather than Hoek-Brown criterion.

A Study on The Engineering Characteristics of Corestone Ground Mass. (핵석지반의 강도 및 변형특성 연구)

  • Lee, Su-Gon;Kim, Dong-Eun;Lee, Chun-Young;Kim, Jae-Heun;Yang, Hong-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.327-333
    • /
    • 2004
  • Corestone ground mass has complicated characteristics as it is made up of hard and stiff corestone in a relatively weak and soft matrix. Model corestone ground mass which is physically identical with the stiff corestone in weak matrix were tested in uniaxial compression. The tests show that the increase of the corestone proportion brought the gradual increase of the elastic modulus as well. The ground mass was weaker when the corestone proportion was low while it was stronger in higher corestone proportion. The size of the corestone had no influence on the strength and elastic modulus as long as the proportion of the corestone remains same.

  • PDF

Effects of construction conditions on deep mixing method for soft ground (연약지반에서 심층혼합처리공법의 개량체 형상변화에 미치는 시공조건)

  • Lee, Kwang-Yeol;Hwang, Jae-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.809-814
    • /
    • 2009
  • Deep mixing method has been used for ground improvement and foundation system for embankment, port and harbor foundations, retaining wall, and liquefaction mitigations. It has attractive benefits because it is not only improved strength of soft ground but superior for prevention of settlement. However, the quality controls of improved mass affect to the efficiency of the deep mixing method is not properly established. These effects vary depending upon the construction environments and conditions of agitation in consideration of an agitator. The strength and shape of the improved column are not unique and these are affected by mechanical properties of agitators. In this study, in order to investigate the efficiency of deep mixing method for ground improvement on a soft clay ground, experimental studies are performed considering mechanical properties of agitator; the location of exit-hole of admixtures, an angle of mixing wing and a speed of revolution. The experiments are conducted with the simulated apparatus for deep mixing plant that reduced the scale in 1:8 of the real plant. According to the results, the diameter and shape of improved column mass vary depending on the mechanical properties and operating conditions of agitator. Its quality is better when the exit-hole of admixtures is located in the mixing wing, when an angle of mixing wing is large, and when the speed of revolution is rapid.

  • PDF

Laboratory experiment on the assessment of the ground strength with corestone (실내실험을 통한 핵석지반의 강도정수 산정연구)

  • 이수곤;김동은;황의성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.95-102
    • /
    • 2003
  • Corestone rock mass has complex characters because it is made up of stronger and stiffer corestone in a weaker and softer matrix. Physical model corestone rock mass made up of stiffer corestone in weaker matrix were tested in uniaxial compression and numercal modelling analysis The result of the uniaxial compression tests showed that increasing the corestone proportion generally increased the modulus of deformation. And the strength decreased in the lower corestone proportion, but it increased in the higher proportion(45%, 65% corestone by volume). The strength and the modulus of deformation were not affected by different size coretone on the same proportion. The result of the numerical modelling analysis showed similar trend compared with the result of the result of the uniaxial compression test. But though the result of th uniaxial compression test is similar to the result of the numerical modelling analysis, it's unreasonalble to apply the results of this paper to in situ corestone rock mass. So mere laboratory tests including triaxial test and the other numerical program analyses are necessary to apply the results to in situ corestone mass

  • PDF

Effect of Joint Cohesive Strength on the Earth Pressure against the Support System in a Jointed Rock Mass (절리형성 암반지층 굴착벽체 작용토압에 대한 절리 점착강도의 영향)

  • Son, Moorak;Solomon, Adedokun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.41-53
    • /
    • 2014
  • This study examined the magnitude and distribution of the earth pressure on the support system in a jointed rock mass by considering different joint shear strength, rock type, and joint inclination angle. The study particularly focused on the effect of joint cohesive strength for a certain condition. Based on a physical model test (Son and Park, 2014), extended parametric studies were conducted considering rock-structure interactions based on the discrete element method, which can consider the rock and joint characteristics of rock mass. The results showed the earth pressure was strongly affected by the joint cohesive strength as well as the rock type and joint inclination angle. The study indicated that the effect of joint cohesive strength was particularly significant when a rock mass was under the condition of joint sliding. This paper investigates the magnitude of joint cohesive strength to prevent a joint sliding for each different condition. The test results were also compared with Peck's earth pressure, which has been frequently used for soil ground. The comparison indicated that the earth pressure in a jointed rock mass can be significantly different from that in soil ground. This study is expected to provide a better understanding of the earth pressure on the support system in a jointed rock mass.

The ground response curve of underwater tunnels, excavated in a strain-softening rock mass

  • Fahimifar, Ahmad;Ghadami, Hamed;Ahmadvand, Masoud
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.323-359
    • /
    • 2015
  • This paper presents an elasto-plastic model for determination of the ground response curve of a circular underwater tunnel excavated in elastic-strain softening rock mass compatible with a nonlinear Hoek-Brown yield criterion. The finite difference method (FDM) was used to propose a new solution to calculate pore water pressure, stress, and strain distributions on periphery of circular tunnels in axisymmetric and plain strain conditions. In the proposed solution, a modified non-radial flow pattern, for the hydraulic analysis, is utilized. To evaluate the effect of gravitational loads and variations of pore water pressure, the equations concerning different directions around the tunnel (crown, wall, and floor) are derived. Regarding the strain-softening behavior of the rock mass, the stepwise method is executed for the plastic zone in which parameters of strength, dilatancy, stresses, strains, and deformation are different from their elasto-plastic boundary values as compared to the tunnel boundary values. Besides, the analytical equations are developed for the elastic zone. The accuracy and application of the proposed method is demonstrated by a number of examples. The results present the effects of seepage body forces, gravitational loads and dilatancy angle on ground response curve appropriately.

Evaluation of Composite Ground Improvement at Structural Foundation Ground by Super Injection Grouing (SIG공법에 의한 구조물기초지반에서의 복합지반개량 평가)

  • 김종국;손형호;이호관;성기광
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.347-354
    • /
    • 2002
  • In this paper, when structures are constructed in the soft ground with poor bearing capacity at Incheon International Airport(railroad area), as for the grouting columns built In soft ground by high pressure jet grouting with Triple tube rod(super injection grouting), the effects on reinforcement and bearing capacity of ground are investigated. A unconfined compressive strength tests has been performed on the specimens sampled from the grouting columns and a mass plate bearing test has been performed on a grouting column. The test results show that super injection grouting has a sufficient effect on composite ground improved of foundation ground and reatraint of settlement of structure.

  • PDF