• Title/Summary/Keyword: abalone %28Haliotis discus hannai%29

Search Result 3, Processing Time 0.019 seconds

Estimation of Genetic Parameters for Growth-Related Traits in 9-month Old of Two Korean Abalone Subspecies, Haliotis discus hannai and H. discus discus, by Using Multiple Traits of Animal Model (다형질 Animal model에 의한 9개월령 한국산 전복 2 아종의 성장관련형질에 대한 유전모수 추정)

  • Choe, Mi-Kyung;Yang, Sang-Geun;Won, Seung-Hwan;Park, Choul-Ji;Han, Seock-Jung;Yeo, In-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.591-599
    • /
    • 2009
  • Genetic parameters for growth-related traits were estimated in 9-month old of two Korean abalone subspecies, Haliotis discus hannai and H. discus discus, using multiple traits of animal model. The data were collected from the records of 3,504 individuals produced from 16 sires and 17 dams in H. discus hannai and 821 individuals produced from 3 sires and 4 dams in H. discus discus, which was evaluated at the Bukjeju branch, NFRDI, from May 20, 2004 to February 14, 2005. The heritability estimates obtained from restricted maximum likelihood (REML) method range from 0.29 to 0.31 for three growth traits (shell length, shell width and body weight) in H. discus hannai and from 0.22 to 0.28 in H. discus discus, respectively. The heritabilities for shell shape and condition factor were lower than others of growth traits such as ranging from 0.03 to 0.24 in H. discus hannai and from 0.06 to 0.11 in H. discus discus, respectively. Genetic and phenotypic correlations were >0.91 between shell parameters and weight in two abalone subspecies, respectively, indicating that breeding for weight gains could be successfully achieved by selecting for shell length.

A Study on the Optimum Stocking Density of the Juvenile Abalone, Hailotis discus hannai Net Cage Culture or Indoor Tank Culture (해상가두리 및 실내 육상수조에서 북방전복, Haliotis discus hannai 치패의 적정 수용밀도에 관한 연구)

  • Kim, Byeong-Hak;Park, Min-Woo;Son, Maeng-Hyun;Kim, Tae-Ik;Cho, Jae-Kwon;Myeong, Jeong-In
    • The Korean Journal of Malacology
    • /
    • v.29 no.3
    • /
    • pp.189-195
    • /
    • 2013
  • Experiments for net cage culture at sea were conducted in each $2.4{\times}2.4$ m in area and took the samples from four different densities: 150, 300, 450 and 600 per cross-sectional area ($m^2$) of shelter. The same stocking densities applied to indoor tank culture to investigate the growth and survival rate. The size of juvenile abalone sample was $36.14{\pm}2.28$ mm for net cage culture and $38.62{\pm}3.22$ mm or indoor tank. Feed such as raw brown sea mustard, raw kelp and dried kelp was sufficiently provided to the abalone. In net cage culture experiment, the growth of the spat of juvenile abalone was the fastest $60.53{\pm}5.75$ mm in the 150 abalone cage per square meter ($m^2$), followed by the 300 abalone cage at $54.01{\pm}5.17$ mm, 450 abalone cage at $51.48{\pm}5.37$ mm and 600 abalone cage at $51.09{\pm}4.96$ mm in order. In the meantime, in the indoor tank experiment, the 150 abalone indoor tank was the fastest $47.50{\pm}6.31$ mm per square meter, followed by the 300 abalone tank at $45.92{\pm}5.23$ mm, the 450 abalone tank at $44.24{\pm}5.59$ mm and the 600 abalone tank at $43.62{\pm}4.44$ mm in order. The survival rate was more than 97.9% in all the experiments, not showing a significant difference.

Lipid Composition of Purple Shell and Abalone (피뿔고둥과 전복의 지질조성에 관한 연구)

  • YOON Ho-Dong;BYUN Han-Seok;KIM Seon-Bong;PARK Young-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.5
    • /
    • pp.446-452
    • /
    • 1986
  • This paper presents the composition of neutral and polar lipids obtained from puple shell, Rapana venosa and the abalone, Haliotis discus hannai. The fatty acid composition and the classification of neutral lipids from two species were determined by gas chromatography (GLC) and thin layer chromatography (TLC). Total lipid contents of samples were $0.5\%$ in purple shell and $0.4\%$ in the abalone. The predominant fatty acids of total lipids were eicosapentaenoic acid ($19.30\%$). eicosenoic acid ($12.10\%$) and palmitic acid ($11.77\%$) in the purple shell, and palmitic acid ($21.29\%$), oleic acid ($14.55\%$) and linoleic acid ($14.21\%$) in the abalone. The lipid composition of non-polar lipid fractions in purple shell and abalone was separated and identified as free sterol, free fatty acid, triglyceride and hydrocarbon & esterified sterol by TLC. The contents of triglyceride from both neutral lipids were shown more abundant than any other subclasses. The main fatty acids of neutral lipids were eicosapentaenoic acid ($18.6\%$), palmitic acid ($14.90\%$) and eicosenoic acid ($14.76\%$) in the purple shell, and palmitic acid ($28.12\%$), oleic acid($20.5\%$) and myristic acid ($12.5\%$) in the abalone. Eicosapentaenoic acid ($17.57\%$), stearic acid ($13.26\%$) and eicosatetraenoic acid ($11.24\%$) were important fatty acids of glycolipid in the purple shell, and myristic acid ($12.75\%$), stearic acid ($12.10\%$) and eicosatetraenoic acid ($10.64\%$) in the abalone. The major fatty acids of phospholipids were eicosapentaenoic acid ($20.18\%$), palmitic acid ($11.26\%$) and eicosenoic acid ($10.90\%$) in the purple shell, and palmitic acid ($21.10\%$), eicosapentaenoic acid ($12.90\%$) and oleic acid($11.13\%$) in the abalone.

  • PDF