• Title/Summary/Keyword: abductive process

Search Result 32, Processing Time 0.02 seconds

The Effects of Science Classes Using Abductive Strategies Applied to Elementary School Students on Scientific Concept Understanding and Meta-cognition (귀추전략 과학수업이 초등학생의 과학적 개념 이해와 초인지에 미치는 영향)

  • KIM, Hee-Yeon;KANG, Beodeul;YOO, Pyoung-Kil
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.1133-1142
    • /
    • 2016
  • The purpose of this study was to verify the effects of science classes using abductive strategies on the scientific concept understanding and meta-cognition. The subjects included two classes of sixth graders from K Elementary School in B Metropolitan City and they divided into two groups. Research group was composed of 21 students(10 boys, 11 girls) and comparative group was composed of 21 students(11 boys, 10 girls). In order to achieve aims of this study, proper contents to apply abductive strategies were selected from the first semester science curriculum for sixth graders. Also five-steps study papers were designed to elicit abductive reasoning. While the research group received 20 times of reframed science lessons using abductive strategies, the comparative group received common science lessons according to the teachers' manual. The results of this study are as follows. First, science classes using abductive strategies were effective for the scientific concept understanding. Also there were statistically significant differences between the research group and the comparative group in overall science sub-domain. In the process of hypothesis formulating, students tried to find out scientific causes thoroughly to present the optimal explanation and they concentrated on the analysis of each scientific concept. It is thought that this process contributed to better understanding in scientific concepts. Second, science classes using abductive strategies were effective for improving meta-cognition. There were statistically significant differences between the two groups and especially in monitoring that is one of sub-factors of meta-cognition. It indicates that hypothesis formulating process gave positive effect on meta-cognition by stimulating critical thinking and manifesting elaboration.

The Development of the Analytic Coding Frames on the Abductive Reasoning in Scientific Inquiry (과학자의 과학적 탐구과정에서 나타나는 귀추적 추론 분석틀 개발)

  • Cho, Hyun-Jun;Jeong, Sun-Hee;Yang, Il-Ho
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.586-601
    • /
    • 2008
  • The purpose of this study was to identify the scientists' abductive reasoning in three stages of hypothetical-deductive inquiry process; generating hypothesis, designing, and interpreting data and to suggest new analytic coding frames on abductive reasoning in each of the stages. For this purpose, the interview protocols collected through in-depth interviews with eight scientists were analyzed by the early frame with sub-elements derived from the literature reviews. The need of a new frame of analysis beyond the previously established elements arose from the result of this analysis because the processes of abductive reasoning were found in all three stages. Based on scientists' interview data, this study then designed a new frame of analytic coding frames on the abductive reasoning in each of the stages. The content validity index from four experts was 0.90, and these frames showed a good fit to analyze the scientists' real process of abduction in three stages of hypothetical-deductive inquiry process.

A Case Study of Middle School Students' Abductive Inference during a Geological Field Excursion (야외 지질 학습에서 나타난 중학생들의 귀추적 추론 사례 연구)

  • Maeng, Seung-Ho;Park, Myeong-Sook;Lee, Jeong-A;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.9
    • /
    • pp.818-831
    • /
    • 2007
  • Recognizing the importance of abductive inquiry in Earth science, some theoretical approaches that deploy abduction have been researched. And, it is necessary that the abductive inquiry in a geological field excursion as a vivid locale of Earth science inquiry should be researched. We developed a geological field trip based on the abductive learning model, and investigated students' abductive inference, thinking strategies used in those inferences, and the impact of a teacher's pedagogical intervention on students' abductive inference. Results showed that students, during the field excursion, could accomplish abductive inference about rock identification, process of different rock generation, joints generation in metamorpa?ic rocks, and terrains at the field trip area. They also used various thinking strategies in finding appropriate rules to construe the facts observed at outcrops. This means that it is significant for the enhancement of abductive reasoning skills that students experience such inquiries as scientists do. In addition, a teacher's pedagogical interventions didn't ensure the content of students' inference while they helped students perform abductive reasoning and guided their use of specific thinking strategies. Students had found reasoning rules to explain the 01: served facts from their wrong prior knowledge. Therefore, during a geological field excursion, teachers need to provide students with proper background knowledge and information in order that students can reason rues for persuasive abductive inference, and construe the geological features of the field trip area by the establishment of appropriate hypotheses.

Rule-Inferring Strategies for Abductive Reasoning in the Process of Solving an Earth-Environmental Problem (지구환경적 문제 해결 과정에서 귀추적 추론을 위한 규칙 추리 전략들)

  • Oh, Phil-Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.4
    • /
    • pp.546-558
    • /
    • 2006
  • The purpose of this study was to identify heuristically how abduction was used in a context of solving an earth-environmental problem. Thirty two groups of participants with different institutional backgrounds, i,e., inservice earth science teachers, preservice science teachers, and high school students, solved an open-ended earth-environmental problem and produced group texts in which their ways of solving the problem were written, The inferential processes in the texts were rearranged according to the syllogistic form of abduction and then analyzed iteratively so as to find thinking strategies used in the abductive reasoning. The result showed that abduction was employed in the process of solving the earth-environmental problem and that several thinking strategies were used for inferring rules from which abductive conclusions were drawn. The strategies found included data reconstruction, chained abduction, adapting novel information, model construction and manipulation, causal combination, elimination, case-based analogy, and existential strategy. It was suggested that abductive problems could be used to enhance students' thinking abilities and their understanding of the nature of earth science and earth-environmental problems.

A Philosophical Study on the Generating Process of Declarative Scientific Knowledge - Focused on Inductive, Abductive, and Deductive process (선언적 과학 지식의 생성 과정에 대한 과학철학적 연구 - 귀납적, 귀추적, 연역적 과정을 중심으로 -)

  • Kwon, Yong-Ju;Jeong, Jin-Su;Park, Yun-Bok;Kang, Min-Jeong
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.3
    • /
    • pp.215-228
    • /
    • 2003
  • The present study is to analyze the arguments about the generation of declarative scientific-knowledge in the philosophy of science and invent a structured model of the process of scientific-knowledge generation with the types of the generated scientific-knowledge. The invented model shows that scientific-knowledge generation is a distinctive process with the processes of inductive, abductive, and deductive thinking. Furthermore, inductive process is included with observation, which is consisted of simple observation and operative observation, and rule-discovery which is involved with the processes of commonness discovery, classification, pattern discovery, and hierarchical relationship. Also, abductive process has two components. One component generates question and second component generates hypothesis in which the process consists of representing question situation, identifying experienced situation, identifying causal explicans, and generating hypothetical explicans. Finally, deductive process is involved with logical inventing test method and evaluation criteria, concrete inventing test method and evaluation criteria, evaluating hypothesis, and making conclusion.

Roles of Models in Abductive Reasoning: A Schematization through Theoretical and Empirical Studies (귀추적 사고 과정에서 모델의 역할 -이론과 경험 연구를 통한 도식화-)

  • Oh, Phil Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.551-561
    • /
    • 2016
  • The purpose of this study is to investigate both theoretically and empirically the roles of models in abductive reasoning for scientific problem solving. The context of the study is design-based research the goal of which is to develop inquiry learning programs in the domain of earth science, and the current article dealt with an early process of redesigning an abductive inquiry activity in geology. In the theoretical study, an extensive review was conducted with the literature addressing abduction and modeling together as research methods characterizing earth science. The result led to a tentative scheme for modeling-based abductive inference, which represented relationships among evidence, resource models, and explanatory models. This scheme was improved by the empirical study in which experts' reasoning for solving a geological problem was analyzed. The new scheme included the roles of critical evidence, critical resource models, and a scientifically sound explanatory model. Pedagogical implications for the support of student reasoning in modeling-based abductive inquiry in earth science was discussed.

The Exploration of Thinking Characteristics of Elementary Science Gifted Children within Scientific Problem Solving (과학 문제 풀이 과정에서 나타난 초등 과학 영재들의 사고 특성 탐색)

  • Kim Eun-Jin
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.2
    • /
    • pp.179-190
    • /
    • 2006
  • While most previous studies have developed educational programs for science gifted children and have analyzed the differences between science gifted children and ordinary children using quantitative research methods, few have investigated the differences among the science gifted, especially in terms of the scientific thinking process. The present study was conducted to explore the thinking characteristics of the elementary science gifted according to the three scientific thinking process types during the scientific problem solving process. The study resulted in the collected of quantitative and qualitative data through tests and an interview with questions and scientific problems which required the use of one of the three scientific thinking processes. Ten elementary science gifted children served as interviewees. Two types as an opistemological basis for solving the problems are revealed on inductive thinking problems. Three types are on abductive thinking, and Three or Four types are on deductive. The results are expected to have an influence on the teaching and the evaluation of the elementary science gifted.

  • PDF

Suggestion for Science Education through the Analysis of Archimedes' Creative Problem Solving Process (Archimedes의 창의적 문제해결과정 분석을 통한 과학교육에의 함의 고찰)

  • Lee, Sang Hui;Paik, Seoung Hey
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.1
    • /
    • pp.30-45
    • /
    • 2013
  • In this study, we developed a model for analyzing scientists' creative thinking processes, and analyzed Archimedes' thinking process in solving the golden crown problem. As results show, scientists' complex problem solving processes could be represented as a repeating circular model, and the fusion of processes of diverse thinking required for scientists' creativity could be analyzed from the case. Also in this study, we represented the role of experiments in scientists' creative discovery, and investigated the reasons for the difference between the viewpoints of textbooks and historic facts. We found the importance of abductive reasoning and advance knowledge in creative thinking. Archimedes solved the golden crown problem creatively by crossing the scientific thought of dynamics and the daily thought of baths. In this process, abductive reasoning and advance knowledge played an important role. Besides Archimedes' case, if we would reconstruct the creative discovery processes of diverse scientists' in textbooks, students could raise their creative thinking ability by experiencing these processes as educational steps.

Concept of Science and Indices of Scientification in the Task of 'Scientification of Korean Medicine' ('한의학 과학화'명제에서 과학의 개념과 과학화의 목록)

  • Chi, Gyoo Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.6
    • /
    • pp.303-310
    • /
    • 2019
  • In order to search for the causes of having difficulty with the scientification task of the Korean medicine, the definition and conception of science were reviewed first and then formalization of reasoning scheme and a practical method of scientification were proposed. Science in its definition is meant by foundation of method and system for production of scientific knowledge not by knowledge of science itself. The formation of science is composed of complex processes including not only scientific knowledge but also politicosocial output containing activity of scientist society, spreading of social value and intercommunication. The production of scientific knowledge of Korean medicine is begun from logicality of the differential diagnosis and treatment theory through abductive verification of analogical inference by yinyang and 5 phase theory. For the commensurability between the various heterogenic theories within Korean medicine, the scientific activity of collecting, compiling, analyzing, distributing, and discussing the significant knowledge gained through abductive verification in the experiment and clinical process should be formed broadly. Based on these knowledge database, organization of scientist society with Korean medicine, life science, medical engineering, social expansion and generalization of pattern conception, and then social propagation and contribution for national health should be driven forward.

Children's Generating Hypotheses on the Pendulum Motion: Roles of Abductive Reasoning and Prior Knowledge (진자운동에서 아동의 가설 생성: 귀추와 선지식의 역할)

  • Joeng, Jin-Su;Park, Yun-Bok;Yang, Il-Ho;Kwon, Yong-Ju
    • Journal of the Korean earth science society
    • /
    • v.24 no.6
    • /
    • pp.524-532
    • /
    • 2003
  • The purpose of the present study was to test the hypothesis that student's abductive reasoning skills play an important role in the generation of hypotheses on pendulum motion tasks. To test the hypothesis, a hypothesis-generating test on the pendulum motion and a prior knowledge test about the length of the pendulum motion were developed and administered to a sample of 5th grade children. A significant number of subjects who have the prior knowledge about the length of the pendulum motion failed to apply that prior knowledge to generate a hypothesis on a swing task. These results showed that students' failure in hypothesis-generating was related to their deficiency in abductive reasoning ability, rather than the simple lack of prior knowledge. Furthermore, children's successful generating hypothesis should be required their abductive reasoning skills as well as prior knowledge. Therefore, this study supports the notion that abductive reasoning ability beyond prior knowledge plays an important role in the process of hypothesis-generation. This study suggests that science education should provide teaching about abdctive reasoning as well as scientific declarative knowledge for developing children's hypothesis-generating skills.