• Title/Summary/Keyword: abiotic stress

Search Result 353, Processing Time 0.033 seconds

Study on CsRCI2D and CsRCI2H for improvement of abiotic stress tolerance in Camelina sativa L.

  • Lim, Hyun-Gyu;Kim, Hyun-Sung;Kim, Jung-Eun;Ahn, Sung-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.196-196
    • /
    • 2017
  • Oilseed crop Camelina (Camelina sativa L.) is a suitable for biodiesel production that has high adaptability under low-nutrient condition like marginal land and requires low-input cost for cultivation. Enhanced abiotic stress tolerance of Camelina is very important for oil production under the wide range of different climate. CsRCI2s (Rare Cold Inducible 2) are related proteins in various abiotic stresses that predicted to localized at plasma membrane (PM) and endoplasmic reticulum (ER). These proteins are consist of eight-family that can be divided into tail (CsRCI2D/E/F/G) and no-tail (CsRCI2A/B/E/H) type of C-terminal. However, it is still less understood the function of C-terminal tail. In this study, CsRCI2D/H genes were cloned through gateway cloning system that used pCB302-3 as destination vector. And we used agrobacterium-mediated transformation system for generation of overexpression (OX) transformants. Overexpression of target gene was confirmed using RT-PCR and segregation ratio on selection media. We analyzed physiological response in media and soil under abiotic stresses using CsRCI2D and CsRCI2H overexpression plant. To compare abiotic stresses tolerance, wild type and CsRCI2D/H OX line seeds were sown on agar plate treated with various NaCl and mannitol concentration for 7 days. In the test of growth rate under abiotic stress on media, CsRCI2H OX line showed similar to NaCl and mannitol stress. In the other hand, CsRCI2D OX line showed to be improved stress tolerance that especially increased in 200mM NaCl but was similar on mannitol media. In greenhouse, WT and CsRCI2D/H OX lines for physiological analysis and productivity under abiotic stresses were treated 100, 150, 200mM NaCl. Then it was measured various parameters such as leaf width and length, plant height, total seed weight, flower number, seed number. CsRCI2H OX line in greenhouse did not show any changes in physiological parameters but CsRCI2D OX line was improved both physiological response and productivity under NaCl stress. Among physiological parameters of CsRCI2D OX line under NaCl stress, leaf length and width were observed shorter than WT but it were slightly longer than WT in 200mM NaCl stress. Furthermore, total seed weight of CsRCI2D OX line under stress displayed to decrease than WT in normal condition, but it was gradually raised with increasing NaCl stress then more than WT relatively. These results suggested CsRCI2D might be contribute to improve abiotic stress tolerance. However, function of CsRCI2H is need to more detail study. In conclusion, overexpression of CsRCI2s family can generate various environmental stress tolerance plant and may improve crop productivity for bio-energy production.

  • PDF

Heterogeneous overexpression of Oryza sativa salt induced RING Finger protein OsSIRF1 positively regulates salt and osmotic stress in transgenic Arabidopsis

  • Chapagain, Sandeep;Jang, Cheol Seong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.150-150
    • /
    • 2017
  • Plants suffer from various abiotic stresses among them; soil salinity is one of major adverse factor in declining agricultural productivity. So, development of salt stress tolerance crops have potential role to increase crop production. The RING finger proteins are known to play crucial roles in abiotic stress environment to plants. In this study, we identified one Salt-responsive Really${\underline{I}nteresting}$ ${\underline{n}ew}$ ${\underline{g}ene}$ (RING) E3 ubiquitin ligase gene OsSIRF1 from rice root tissues during salt stress and studied its molecular function. Expression of OsSIRF1 was induced under various abiotic stress conditions, including salt, heat, drought, and ABA. Result of an in vitro ubiquitination assay clearly showed that OsSIRF1 Possess an E3 ligase activity. Moreover, OsSIRF1 was found to be localized to the nucleus within the cell. Heterogeneous overexpression of OsSIRF1 in Arabidopsis improved seed germination and increased root length under salt and Manitol stress conditions. Taking together, these results suggested that OsSIRF1 may be associated with plant responses to abiotic stressors and positively regulates salt and osmotic stress environment.

  • PDF

Isolation of Multi-Abiotic Stress Response Genes to Generate Global Warming Defense Forage Crops

  • Ermawati, Netty;Hong, Jong Chan;Son, Daeyoung;Cha, Joon-Yung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.4
    • /
    • pp.242-249
    • /
    • 2021
  • Forage crop management is severely challenged by global warming-induced climate changes representing diverse a/biotic stresses. Thus, screening of valuable genetic resources would be applied to develop stress-tolerant forage crops. We isolated two NAC (NAM, ATAF1, ATAF2, CUC2) transcription factors (ANAC032 and ANAC083) transcriptionally activated by multi-abiotic stresses (salt, drought, and cold stresses) from Arabidopsis by microarray analysis. The NAC family is one of the most prominent transcription factor families in plants and functions in various biological processes. The enhanced expressions of two ANACs by multi-abiotic stresses were validated by quantitative RT-PCR analysis. We also confirmed that both ANACs were localized in the nucleus, suggesting that ANAC032 and ANAC083 act as transcription factors to regulate the expression of downstream target genes. Promoter activities of ANAC032 and ANAC083 through histochemical GUS staining again suggested that various abiotic stresses strongly drive both ANACs expressions. Our data suggest that ANAC032 and ANAC083 would be valuable genetic candidates for breeding multi-abiotic stress-tolerant forage crops via the genetic modification of a single gene.

Physiological responses involved in reactive oxygen species (ROS) of rice plant under alone or multi artificial stress conditions

  • Kim, Yoonha;Waqas, Muhammad;Khan, Abdul Latif;Mun, Bong-Gyu;Yun, Byung-Wook;Lee, In-Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.203-203
    • /
    • 2017
  • The Earth's climate is rapidly changing because of increasing carbon dioxide content in atmosphere so, climate prediction models anticipate that earth surface temperature will rise by 3 to $5^{\circ}C$ in next 50 to 100 years. Therefore, frequency of un-expected weather events such as drought, salinity, low or high temperature and flooding etc. will be increasing worldwide. Furthermore, increased atmosphere temperature can influence pests and pathogens spread as well. Therefore, to protect enormous grain loss from unexpected weather conditions, studies related with combine stress conditions like abiotic plus biotic stress condition are really required. Thus, our research focused on physiological responses under combined abiotic and biotic stress condition in rice plant. To induce uniform stress condition, we used NaCl (100 mM) and salicylic acid (0.5 and 1.0 mM SA) as each stress a stimulator. Each artificial abiotic and biotic stress inducer was applied to hydroponically grown rice seedlings alone or together for four day. The data were collected in a time-dependent manner [1, 2, 3 and 4 day(s) after treatment (DAT)] and were matched with our anticipation that shoot length and shoot fresh weight was decreased in solo and combined abiotic and biotic stress condition. The lipid peroxidation content was significantly increased ($1.5{\pm}0.2$ to $2.7{\pm}0.1mg$ mg of $MDA\;g^{-1}FW$) in the first two days in both stress exposed plants, and showed the opposite trend ($0.5{\pm}0.01$ to $0.1{\pm}0.001mg$ of $MDA\;g^{-1}FW$) in last two days under multi stress condition. Superoxide dismutase (SOD) activity did not showed difference in only biotic stress condition (alone 0.5 and 1.0 mM SA) as compared to control however, it was significantly increased in multi stress condition or solo abiotic stress condition whereas, catalase (CAT), and ascorbate peroxidase (APX) activities were significantly decreased in solo biotic and combined abiotic and biotic condition. In particular, both enzymes activities were more decreased in multi stress condition as compared to solo biotic stress condition. The results for relative mRNA expression level of CAT and APX enzymes were in agreement with results of spectrophotometric values. Correlation value between each stress condition and phenotypic data showed that biotic stress condition showed high correlation with activity of CAT and APX whilst, abiotic stress condition revealed significant correlation with SOD activity.

  • PDF

Proteomic Dissection of Abiotic Stress Response in Crop Plants

  • Alam, Iftekhar;Sharmin, Shamima Akhtar;Lee, Byung-Hyun
    • 한국환경농학회:학술대회논문집
    • /
    • 2011.07a
    • /
    • pp.196-204
    • /
    • 2011
  • Abiotic stress is the primary cause of crop loss worldwide, reducing average yields for most major crop plants by more than 50%. In addition, future agricultural production and management will encounter multifaceted challenges from global climate change. Therefore, it is necessary to study the molecular response of crop plants to the stresses in order to develop appropriate strategies to sustain food production under adverse environmental conditions. We carried out a large scale proteomic analysis of soybean plants in response to various abiotic stresses, including drought, salinity, waterlogging and their interactions. Proteins were analyzed by two dimensional polyacrylamide gel electrophoresis followed by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. The identified proteins are involved in a wide range of cellular functions. In addition to the well known stress-associated proteins, we identified several novel proteins, which were not reported before. In many cases our proteomic data bridges the gap between mRNA and metabolite data. Our studie provides new insights into identification of abiotic stress responsive proteins in soybean, and demonstrates the advantages of proteomic analysis in dissecting metabolic and regulatory networks.

  • PDF

Global Analysis of Gene Expression upon Acid Treatment in Arabidopsis thaliana

  • Kim, Jung-Koo;Baek, Seung-A;Yoon, Seok-Joo;Park, Han-Jin;Lee, Suk-Chan;Lee, Tae-Soo;Im, Kyung-Hoan
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.172-178
    • /
    • 2009
  • To obtain global gene expression profiles of Arabidopsis thaliana by acid stress, seedlings were subjected to low pH stress. Using Affymetrix AH1 chips covering 24,000 genes, we analyzed gene expression patterns. Fifty-four genes were up-regulated, and 38 were down-regulated more than 3-fold after 2 h of acid stress (pH 3.0). Several defense and abiotic stress-related genes were recognized among the up-regulated genes and peroxidase and extensin genes were identified among the down-regulated genes. After 12 h treatment, relatively fewer genes showed changed expression, indicating that plants seem to adjust themselves to this abiotic stress. Most of the up-regulated genes are already known to be involved in abiotic stress responses and pathogen attacks, especially wounding. However, down-regulated genes for the members of extensins and peroxidases are specific to the acid treatment. These results suggest that acid treatment turns on genes involved in stress responses, especially in wounding and turns off genes very specific for the acid stress.

The unicellular green alga Dunaliella salina Teod. as a model for abiotic stress tolerance: genetic advances and future perspectives

  • Ramos, Ana A.;Polle, Jurgen;Tran, Duc;Cushman, John C.;Jin, Eon-Seon;Varela, Joao C.
    • ALGAE
    • /
    • v.26 no.1
    • /
    • pp.3-20
    • /
    • 2011
  • The physiology of the unicellular green alga Dunaliella salina in response to abiotic stress has been studied for several decades. Early D. salina research focused on its remarkable salinity tolerance and ability, upon exposure to various abiotic stresses, to accumulate high concentrations of $\beta$-carotene and other carotenoid pigments valued highly as nutraceuticals. The simple life cycle and growth requirements of D. salina make this organism one of the large-scale commercially exploited microalgae for natural carotenoids. Recent advances in genomics and proteomics now allow investigation of abiotic stress responses at the molecular level. Detailed knowledge of isoprenoid biosynthesis mechanisms and the development of molecular tools and techniques for D. salina will allow the improvement of physiological characteristics of algal strains and the use of transgenic algae in bioreactors. Here we review D. salina isoprenoid and carotenoid biosynthesis regulation, and also the biotechnological and genetic transformation procedures developed for this alga that set the stage for its future use as a production system.

Exogenous Bio-Based 2,3-Butanediols Enhanced Abiotic Stress Tolerance of Tomato and Turfgrass under Drought or Chilling Stress

  • Park, Ae Ran;Kim, Jongmun;Kim, Bora;Ha, Areum;Son, Ji-Yeon;Song, Chan Woo;Song, Hyohak;Kim, Jin-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.582-593
    • /
    • 2022
  • Among abiotic stresses in plants, drought and chilling stresses reduce the supply of moisture to plant tissues, inhibit photosynthesis, and severely reduce plant growth and yield. Thus, the application of water stress-tolerant agents can be a useful strategy to maintain plant growth under abiotic stresses. This study assessed the effect of exogenous bio-based 2,3-butanediol (BDO) application on drought and chilling response in tomato and turfgrass, and expression levels of several plant signaling pathway-related gene transcripts. Bio-based 2,3-BDOs were formulated to levo-2,3-BDO 0.9% soluble concentrate (levo 0.9% SL) and meso-2,3-BDO 9% SL (meso 9% SL). Under drought and chilling stress conditions, the application of levo 0.9% SL in creeping bentgrass and meso 9% SL in tomato plants significantly reduced the deleterious effects of abiotic stresses. Interestingly, pretreatment with levo-2,3-BDO in creeping bentgrass and meso-2,3-BDO in tomato plants enhanced JA and SA signaling pathway-related gene transcript expression levels in different ways. In addition, all tomato plants treated with acibenzolar-S-methyl (as a positive control) withered completely under chilling stress, whereas 2,3-BDO-treated tomato plants exhibited excellent cold tolerance. According to our findings, bio-based 2,3-BDO isomers as sustainable water stress-tolerant agents, levo- and meso-2,3-BDOs, could enhance tolerance to drought and/or chilling stresses in various plants through somewhat different molecular activities without any side effects.

RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants

  • Cho, Seok Keun;Ryu, Moon Young;Kim, Jong Hum;Hong, Jeong Soo;Oh, Tae Rin;Kim, Woo Taek;Yang, Seong Wook
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.393-400
    • /
    • 2017
  • Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants.

Increased Abiotic Stress Tolerance by Over-expressing OsABF2 in Transgenic Arabidopsis thaliana (OsABF2를 과발현시킨 애기장대에서 비생물학적 스트레스에 대한 내성 증가)

  • Park, Phun Bum
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1515-1522
    • /
    • 2012
  • The phytohormone abscisic acid (ABA) plays an important role in the adaptive response of plants to abiotic stresses. ABA also regulates many important processes, including seed dormancy, germination, inhibition of cell division, and stomatal closure. OsABF2 (Oryza sativa ABRE binding factor2) is one of the bZIP type transcription factors, which are involved in abiotic stress response and ABA signaling in rice. Expression of OsABF2 is induced by ABA and various stress treatments. Findings show that survival rates of OsABF2 over-expressing Arabidopsis lines were increased under drought, salt, and heat stress conditions. The germination ratio of OsABF2 over-expressing Arabidopsis lines was decreased in the presence of ABA. Results indicate that OsABF2 over-expressing Arabidopsis lines have enhanced abiotic stress tolerance and have increased ABA sensitivity.