• Title/Summary/Keyword: acetylene gas lamp

Search Result 4, Processing Time 0.021 seconds

A study of Lighthouses in Korean History Books and the Evolution of Light Sources since the Modern Age (우리나라 역사서(歷史書)에 나타난 등대와 근대 이후 등대 광원의 변천에 관한 연구)

  • Jin, Han-Sook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.332-334
    • /
    • 2012
  • This study investigates records about state systems which were installed to manage aids to navigation workings related to ship and navigation in Korea. It shows the transition process from signal-fire that was used for safe sailing in the three kingdom period to the oil lamp, acetylene gas light, electric light and the LED lamp have been used as a light source for the lighthouses since the modern age.

  • PDF

Field Emission Properties of Flat Lamp using Carbon Nanotubes Grownon Glass Substrate (유리기판 위에 성장된 탄소나노튜브를 이용한 평판 램프의 전계방출 특성)

  • Lee, Yang-Doo;Moon, Seung-Il;Han, Jong-Hun;Lee, Yun-Hi;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.647-651
    • /
    • 2004
  • We fabricated the 1-inch diode type flat lamp using CNTs, which were grown directly on soda-lime glass substrate at 600 ∼ 650 $^{\circ}C$ by thermal chemical vapor deposition(CVD) of acetylene gas. Turn- on field was about 2.8 V/${\mu}{\textrm}{m}$. We observed that uniform and high brightness had been obtained. The brightness of CNT flat lamp was measured up to about 14 kcd/$m^2$ at 2000V in spacing of 500 ${\mu}{\textrm}{m}$. The results showed that the CNTs were very good emission source and suitable for application in the lamp.

Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by Plasma-enhanced Chemical Vapor Deposition (플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성)

  • 오정근;주병권;김남수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1248-1254
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and ate analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene(C$_2$H$_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen(H$_2$) gas plasma indicates better vortical alignment, lower temperature process, and longer tip, compared to that grown by ammonia(NH$_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be 2.6 V/${\mu}{\textrm}{m}$ We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.

Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by plasma-enhanced chemical vapor deposition (플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성)

  • Oh, Jung-Keun;Ju, Byeong-Kwon;Kim, Nam-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.71-75
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and are analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene($C_2H_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen($H_2$) gas plasma indicates better vertical alignment, lower temperature process and longer tip, compared to that grown by ammonia($NH_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be $2.6\;V/{\mu}m$. We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.

  • PDF