• Title/Summary/Keyword: acid regulation agents

Search Result 33, Processing Time 0.027 seconds

Effect of Grapefruit Seed Extracts and Acid Regulation Agents on the Qualities of Topokkidduk (떡볶이떡 품질 개선에 자몽종자 추출물과 산도 조절제의 효과)

  • Kang, Ho Jin;Park, Jong Dae;Lee, Hyun Yu;Kum, Jun Seok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.6
    • /
    • pp.948-956
    • /
    • 2013
  • This study investigated methods to improve the quality of Topokkidduk using grapefruit seed extracts and acid regulation agents. Topokkidduk was investigated in terms of its moisture, color, pH, texture, microbial composition, and sensory properties. The moisture content of Topokkidduk was highest for Topokkidduk supplemented with grapefruit seed extracts. The color of Topokkidduk (the L value) decreased, whereas the "a" value increased with the addition of grapefruit seed extracts. The texture of Topokkidduk was affected more by additives than storage temperature. The addition of grapefruit seed extracts and acid regulation agents were effective for the inhibition of microbial activity in Topokkidduk during storage. The overall acceptability values of Topokkidduk (without supplements) were highest among the samples. These results suggest that grapefruit seed extracts and acid regulation agents can be used to control microbial load and moisture levels in Topokkidduk.

The Residues of Antibiotics (Tetracycline, Oxolinic Acid and Ciplofloxacin) and Malachite Green in Cultured Rainbow Trout (양식산 무지개송어에서의 항생제와 말라카이트 그린 잔류량 조사)

  • Kim, Young-Mog;Lee, Myung-Suk;Chung, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.4
    • /
    • pp.828-835
    • /
    • 2013
  • Products from aquaculture have sometimes been focused on the problems caused by the contamination of chemical agents as the use of chemical agents in aquaculture has been annually increased. The risk of contamination of products by chemical agents is greater in freshwater than in seawater. In order to evaluate the food safety of a fish grown in freshwater, we investigated the residues of antibiotics (tetracycline, oxolinic acid and ciplofloxacin) and malachite green in cultured rainbow trout, Oncorhynchus mykiss. Malachite green, which was prohibited in the application of aquaculture, was not detected in samples tested in this study. The residual content of tetracycline was determined to be less than the permissible amount, <0.2 mg/kg. The contents of ciplofloxacin was also less than the permissible amount, <0.1 mg/kg. However, in case of oxolinic acid, one of samples was only exhibited higher content than the permissible amount (<0.1 mg/kg). The results obtained in this study suggested that the control and regulation of chemical agents such as antibiotics was important to maintain a safe and worry-free seafood supply.

Anticancer Effects of Thymoquinone, Caffeic Acid Phenethyl Ester and Resveratrol on A549 Non-small Cell Lung Cancer Cells Exposed to Benzo(a)pyrene

  • Ulasli, Sevinc Sarinc;Celik, Sefa;Gunay, Ersin;Ozdemir, Mehmet;Hazman, Omer;Ozyurek, Arzu;Koyuncu, Tulay;Unlu, Mehmet
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6159-6164
    • /
    • 2013
  • Background: Phytochemical compounds are emerging as a new generation of anticancer agents with limited toxicity in cancer patients. The purpose of this study was to investigate the potential effcts of thymoquinone, caffeic acid phenylester (CAPE) and resveratrol on inflammatory markers, oxidative stress parameters, mRNA expression levels of proteins and survival of lung cancer cells in Vitro. Materials and Methods: The A549 cell line was treated with benzo(a)pyrene, benzo(a)pyrene plus caffeic acid phenylester (CAPE), benzo(a)pyrene plus resveratrol (RES), and benzo(a)pyrene plus thymoquinone (TQ). Inflammatory markers, oxidative stress parameters, mRNA expression levels of apoptotic and anti-apoptotic proteins and cell viability were assessed and results were compared among study groups. Results: TQ treatment up-regulated Bax and down-regulated Bcl2 proteins and increased the Bax/Bcl2 ratio. CAPE and TQ also up-regulated Bax expression. RES and TQ down-regulated the expression of Bcl-2. All three agents decreased the expression of cyclin D and increased the expression of p21. However, the most significant up-regulation of p21 expression was observed in TQ treated cells. CAPE, RES and TQ up-regulated TRAIL receptor 1 and 2 expression. RES and TQ down-regulated the expression of NF-kappa B and IKK1. Viability of CAPE, RES and TQ treated cells was found to be significantly decreased when compared with the control group (p=0.004). Conclusions: Our results revealed up-regulation of the key upstream signaling factors, which ultimately cause increase in their regulatory p53 levels affecting the induction of G2/M cell cycle arrest and apoptosis. Overall these results provide mechanistic insights for understanding the molecular basis and utility of the anti-tumor activity of TQ, RES and CAPE.

Suppressive Effect of Maslinic Acid on PMA-induced Protein Kinase C in Human B-Lymphoblastoid Cells

  • Mooi, Lim Yang;Yew, Wong Teck;Hsum, Yap Wei;Soo, Khoo Kong;Hoon, Lim Saw;Chieng, Yeo Chew
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1177-1182
    • /
    • 2012
  • Protein kinase C (PKC) has been implicated in carcinogenesis and displays variable expression profiles during cancer progression. Studies of dietary phytochemicals on cancer signalling pathway regulation have been conducted to search for potent signalling regulatory agents. The present study was designed to evaluate any suppressive effect of maslinic acid on PKC expression in human B-lymphoblastoid cells (Raji cells), and to identify the PKC isoforms expressed. Effects of maslinic acid on PKC activity were determined using a PepTag$^{(R)}$ assay for non-radioactive detection of PKC. The highest expression in Raji cells was obtained at 20 nM PMA induced for 6 hours. Suppressive effects of maslinic acid were compared with those of four PKC inhibitors (H-7, rottlerin, sphingosine, staurosporine) and two triterpenes (oleanolic acid and ursolic acid). The $IC_{50}$ values achieved for maslinic acid, staurosporine, H-7, sphingosine, rottlerin, ursolic acid and oleanolic acid were 11.52, 0.011, 0.767, 2.45, 5.46, 27.93 and $39.29\;{\mu}M$, respectively. Four PKC isoforms, PKC ${\beta}I$, ${\beta}II$, ${\delta}$, and ${\zeta}$, were identified in Raji cells via western blotting. Maslinic acid suppressed the expression of PKC ${\beta}I$, ${\delta}$, and ${\zeta}$ in a concentration-dependent manner. These preliminary results suggest promising suppressive effects of maslinic acid on PKC activity in Raji cells. Maslinic acid could be a potent cancer chemopreventive agent that may be involved in regulating many downstream signalling pathways that are activated through PKC receptors.

Effects of Retinoic Acid and cAMP on the Differentiation of Naegleria gruberi Amoebas into Flagellates

  • Bora Kim;Hong Kyoung Kim;Daemyoung Kim;In Kwon Chung;Young Min Kim;Jin Won Cho;JooHun Lee
    • Animal cells and systems
    • /
    • v.3 no.2
    • /
    • pp.207-213
    • /
    • 1999
  • During the differentiation of Naegleria gruberi amoebas into flagellates, the amoebas undergo sequential changes in cell shape and form new cellular organelles. To understand the nature of the signal which initiates this differentiation and the signal transduction pathway, we treated cells with four agents, PMA, retinoic acid (RA), okadaic acid, and cAMP. Retinoic acid and cAMP had specific effects on the differentiation of N. gruberi depending on the time of the drug treatment. Addition of (100$\mu$M) retinoic acid at the initiation of differentiation inhibited differentiation by blockinq the transcription of differentiation specific genes (e.g., $\beta$-tubulin). This inhibition of differentiation by retinoic acid was overcome by co-treatment with cAMP (or dbcAMP, 20 $\mu$M). Addition of retinoic acid at later stages (30 and 70 min) had no effect on the transcriptional regulation of the $\beta$-tubulin gene, however the differentiation was inhibited by different degrees. Co-treatment of cAMP at these stages did not overcome the inhibitory effect of retinoic acid. These results suggest that the role of retinoic acid as a transcriptional regulator might be conserved throughout the evolution of eukaryotes.

  • PDF

Leaching Characteristics of Heavy Metals of Bottom Ash and Plating Sludge with Environmental Conditions in Landfill (매립지 환경조건을 고려한 소각재와 도금슬러지의 중금속 용출특성)

  • 손희정;김은호;이용희
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.121-127
    • /
    • 1998
  • This study was to understand leaching characteristics with pH controlling agents and Temp. control, and investigate leaching characteristics with pH control from opening a leaching test to an end for reassessing leaching test of heavy metals with environmental conditions in landfill. Because leaching of heavy metals was increased in low pH, pH must control for leaching in existing leaching test. Generally, regulation time(6hr) of leaching was confirmed reasonablely, except for Cu in plating sludge. In pH controlling solution, there was nearly not difference between Acetic acid and HCl and if considering Cu, the former was appropriate. In a part of heavy metal, leaching rate was increased in high Temp., and normal Temp. in existing leaching test would be revaluated.

  • PDF

Self-Sufficient Catalytic System of Human Cytochrome P450 4A11 and NADPH-P450 Reductase

  • Han, Song-Hee;Eun, Chang-Yong;Han, Jung-Soo;Chun, Young-Jin;Kim, Dong-Hyun;Yun, Chul-Ho;Kim, Dong-Hak
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.156-161
    • /
    • 2009
  • The human cytochrome P450 4A11 is the major monooxygenase to oxidize the fatty acids and arachidonic acid. The production of 20-hydroxyeicosatetraenoic acid by P450 4A11 has been implicated in the regulation of vascular tone and blood pressure. Oxidation reaction by P450 4A11 requires its reduction partners, NADPH-P450 reductase (NPR). We report the functional expression in Escherichia coli of bicistronic constructs consisting of P450 4A11 encoded by the first cistron and the electron donor protein, NPR by the second. Typical P450 expression levels of wild type and several N-terminal modified mutants was observed in culture media and prepared membrane fractions. The expression of functional NPR in the constructed P450 4A11: NPR bicistronic system was clearly verified by reduction of nitroblue tetrazolium. Membrane preparation containing P450 4A11 and NPR efficiently oxidized lauric acid mainly to $\omega$-hydroxylauric acid. Bicistronic coexpression of P450 4A11 and NPR in E. coli cells can be extended toward identification of novel drug metabolites or therapeutic agents involved in P450 4A11 dependent signal pathways.

Gallic Acid Inhibits STAT3 Phosphorylation and Alleviates DDS-induced Colitis via Regulating Cytokine Production

  • Jeong, Ji Hyun;Kim, Eun Yeong;Choi, Hee Jung;Chung, Tae Wook;Kim, Keuk Jun;Kim, So Yeon;Ha, Ki Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.5
    • /
    • pp.338-346
    • /
    • 2016
  • Signal transducer and activator of transcription 3 (STAT3) is associated with various human diseases, such as cancer, auto-immune disease, and intestinal inflammation. The limited and inadequate effect of standard approaches for treating inflammatory bowel disease (IBD) has prompted to develop alternative anti-colitis agents through inhibition of STAT3. Here, we show that gallic acid (GA), a 3,4,5-trihydroxybenzoic acid, markedly reduced phosphorylation of STAT3. Among the derivatives of benzoic acids, GA showed significant inhibition on STAT3 phosphorylation. In addition, GA ameliorated the dextran sodium sulfate (DSS)-induced acute colitis as determined by the measurement of symptomatic and histological indices. The suppression of DSS-induced acute colitis by GA treatment may be related to the regulation of cytokines and growth factors. Furthermore, GA inhibited phosphorylation of STAT3 in the colon tissue of DSS-treated mice. These findings may be useful in comprehending the molecular action of GA on STAT3 phosphorylation and provide novel insights into the potential application of GA in the treatment of STAT3-related inflammatory disease, such as IBD.

Antioxidant Effects of Gamma-oryzanol on Human Prostate Cancer Cells

  • Klongpityapong, Papavadee;Supabphol, Roongtawan;Supabphol, Athikom
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5421-5425
    • /
    • 2013
  • Background: To assess the antioxidant effects of gamma-oryzanol on human prostate cancer cells. Materials and Methods: Cytotoxic activity of gamma-oryzanol on human DU145 and PC3 prostate cancer cells was determined by proliferation assay using 3-(4, 5-dimethylthiazol, 2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) reagent. mRNA levels of genes involved in the intracellular antioxidant system, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GSR) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Cancer cell lysates were used to measure lipid peroxidation using thiobarbituric acid reactive substance (TBARS). Glutathione contents of the cell lysates were estimated by the reaction between sulfhydryl group of 5, 5'-dithio (bis) nitrobenzoic acid (DTNB) to produce a yellow-color of 5-thio-2-nitrobenzoic acid using colorimetric assay. Catalase activity was also analysed by examining peroxidative function. Protein concentration was estimated by Bradford's assay. Results: All concentrations of gamma-oryzanol, 0.1-2.0mg/ml, significantly inhibited cell growth in a dose- and time-dependent fashion in both prostate cancer cell lines, DU145 and PC3. Gene expression of catalase in DU145 and PC3 exposed to gamma-orizanol at 0.5mg/ml for 14 days was down regulated, while mRNA of GPX was also down regulated in PC3. The MDA and glutathione levels including catalase activity in the cell lysates of DU145 and PC3 treated with gamma-oryzanol 0.1 and 0.5mg/ml were generally decreased. Conclusions: This study highlighted effects of gamma-oryzanol via the down-regulation of antioxidant genes, catalase and GPX, not cytotoxic roles. This might be interesting for adjuvant chemotherapy to make prostate cancer cells more sensitive to free radicals. It might be useful for the reduction of cytotoxic agents and cancer chemoprevention.

Cis-3-O-p-hydroxycinnamoyl Ursolic Acid Induced ROS-Dependent p53-Mediated Mitochondrial Apoptosis in Oral Cancer Cells

  • Wang, Ching-Ying;Lin, Chen-Sheng;Hua, Chun-Hung;Jou, Yu-Jen;Liao, Chi-Ren;Chang, Yuan-Shiun;Wan, Lei;Huang, Su-Hua;Hour, Mann-Jen;Lin, Cheng-Wen
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.54-62
    • /
    • 2019
  • Cis-3-O-p-hydroxycinnamoyl ursolic acid (HCUA), a triterpenoid compound, was purified from Elaeagnus oldhamii Maxim. This traditional medicinal plant has been used for treating rheumatoid arthritis and lung disorders as well as for its anti-inflammation and anticancer activities. This study aimed to investigate the anti-proliferative and apoptotic-inducing activities of HCUA in oral cancer cells. HCUA exhibited anti-proliferative activity in oral cancer cell lines (Ca9-22 and SAS cells), but not in normal oral fibroblasts. The inhibitory concentration of HCUA that resulted in 50% viability was $24.0{\mu}M$ and $17.8{\mu}M$ for Ca9-22 and SAS cells, respectively. Moreover, HCUA increased the number of cells in the sub-G1 arrest phase and apoptosis in a concentration-dependent manner in both oral cancer cell lines, but not in normal oral fibroblasts. Importantly, HCUA induced p53-mediated transcriptional regulation of pro-apoptotic proteins (Bax, Bak, Bim, Noxa, and PUMA), which are associated with mitochondrial apoptosis in oral cancer cells via the loss of mitochondrial membrane potential. HCUA triggered the production of intracellular reactive oxygen species (ROS) that was ascertained to be involved in HCUA-induced apoptosis by the ROS inhibitors YCG063 and N-acetyl-L-cysteine. As a result, HCUA had potential antitumor activity to oral cancer cells through eliciting ROS-dependent and p53-mediated mitochondrial apoptosis. Overall, HCUA could be applicable for the development of anticancer agents against human oral cancer.