• Title/Summary/Keyword: acidic dyke

Search Result 12, Processing Time 0.029 seconds

Electrical and VLF EM Responses for Conductive Dipping Dyke (맥상 황화광체에 대한 전기 및 전자탐사 반응)

  • Yoo In-Kol
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.110-115
    • /
    • 1998
  • Self-potential, VLF-EM and dipole-dipole resistivity methods have been widely used for exploration of conductive sulfide ore deposit, because of the convenience and low cost of field work and the reliability of their results. The geophysical responses for vein-type sulfide outcrop of Changkoom mine located in Bukwi-Myon, Jinan-Gun, Chollabuk-Do were investigated and compared with its drilling results. The geology around the survey area is composed of acidic volcanics and sediments of Yuchon Group. And sulfides bearing pyrite, pyrrotite, galena etc. are deposited in disseminated or vein type within acidic volcanics. Typical geophysical responses were detected from the above vein type ore body, respectively. From the shape and extent of S.P. anomaly, ore body is dipping westward and extending about 50 m. It is detected that the VLF EM response matching the outline of ore zone is considered as indication of dyke dipping westward. And also resistivity response indicating conductive dipping dyke is detected. From drilling results for outcrop and geophysical anomalies, the shape of ore body is vein type dipping about $70^{\circ}W$ and extending about 50 m.

  • PDF

SHRIMP Zircon U-Pb Geochronology, Geochemistry and Sr-Nd Isotopic Study of the Cheongju granitoid rocks (청주 화강암의 SHRIMP 저어콘 U-Pb 연대, 지구화학 및 Sr-Nd 동위원소 연구)

  • Cheong, Won-Seok;Kim, Yoon-Sup;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.191-206
    • /
    • 2011
  • The emplacement ages, whole-rock geochemistry and Sr-Nd isotopic compositions of granitoid rocks from Cheongju area, South Korea, were investigated for delineating their petrogenetic link to the Jurassic Daebo granitoid rocks. Zircon crystals were collected from the diorite, biotite granite and acidic dyke samples in a single outcrop. Cross-cutting relationships show that the emplacement of diorite was postdated by the intrusion of biotite granite. Both rocks have been subsequently intruded by acidic dyke. The U-Pb isotopic compositions of zircon from the diorite, biotite granite, and acidic dyke were measured using a SHRIMP-II ion microprobe, yielding the crystallization ages of $174{\pm}2Ma$, $170{\pm}2Ma$, and $170{\pm}5Ma$, respectively, with 95% confidence limits ($t{\sigma}$). The emplacement ages are consistent with those determined from the above relative ages. The major and trace element patterns of the rocks are consistent with those of the Jurassic Daebo granitoid rocks, possibly suggesting a subduction-related I-type granite. The geochemical signature is, however, betrayed by the Sr and Nd isotopic compositions of these rocks. The isotopic signatures suggest that the rocks were produced either by the partial melting of lower-crust or by the mantle-derived magma contaminated by the basement rocks during its ascent and/or emplacement. In addition, the inherited ages of zircons of the rocks (ca. 2.1, 1.8, 0.8 and 0.4 Ga) suggest a possible assimilation with crustal rocks from the Gyeonggi massif and Ogcheon metamorphic belt.

Geological Structures and Their Relation to Groundwater System around K-1 Oil Stockpile (K-1 기지 주변 지질 구조와 지하수위 변동 특성)

  • Moon, Sang-Ho;Kim, Young-Seog;Ha, Kyoo-Chul;Won, Chong-Ho;Lee, Jin-Yong
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.149-162
    • /
    • 2010
  • The most serious problem in oil stockpiles with artificial underground cavern is maintaining the stability of ground water system. In order to understand the ground water system around K-1 site, we determined the regional flow direction and level distribution of groundwater, and investigated the major geologic factors influencing their flow system. Reactivated surface along the contact between granite and gneiss, and fractures and faults along the long acidic dyke may contribute as important pathways for groundwater flow. Within K-1 site, groundwater level fluctuation is closely related to the rainfall events and injection from surface or influx water. In this project, the effect of groundwater pumping from the southern wells was examined. Based on equations relating water level drawdown to pumping rate at those wells, their pumped outflow of groundwater ranged from $80\;m^3$/day to less than $250\;m^3$/day. The modeling results with MODFLOW imply that the previous groundwater pumping at distance of 1.2 km may not affect the groundwater level variations of the K-1 site. However, continuous pumping work at quantity over $250\;m^3$/day in this area will be able to affect the groundwater system of the K-1 site, particularly along the acidic dyke.

Dyke Swarms and Fracture System and their Relative Chronology and Tectonic Implications in the Jukbyeon-Bugu Area, Uljin, East Korea (한반도 동부 울진 죽변-부구 지역 암맥군과 단열계의 상대연령과 지구조적 의미)

  • Kim, Chang-Min;Kim, Jong-Sun;Song, Cheol-Woo;Son, Moon;Choi, Sung-Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.173-189
    • /
    • 2011
  • Basic to acidic dykes and systematic joints are observed pervasively in the Jukbyeon-Bugu area, Uljin, east Korea. In order to classify the dykes and joints and to determine the relative chronology, their geometries, kinematics, and cross-cutting relationships, and the petrography and geochemistry of dykes are synthetically analyzed. Based on the orientations and cross-cutting relationships of 144 dykes (137 basic and 7 acidic dykes) and 370 systematic joints, three basic dike swarms (M-10, M-80, and M-100), one acidic dyke group (AD), and four joint sets (J-10, J-40, J-80, and J-150) are classified. Some of the J-150 joints reactivated as dextral strike-slip fault are recognized in the field and named as F-340R. According to petrographic, geochemical, and occurrence features in the field, M-80 and M-100 dykes have originated from a co-magma and intruded under the same stress field, even though they have intruded through different passages, preexisting fractures and new fractures created by magmatic pressure, respectively. And the relative chronology of dyke swarms and joint sets in the study area is determined as follows : ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ . And the M-80 (M-100) and M-10 dyke swarms intruded under NNE-SSW and NW-SE trending horizontal minimum stress fields, respectively. According to a synthesis of the results of the previous and this studies, the M-80, M-10, and F-340R are interpreted to have been formed about 64-52 Ma, Eocene~Oligocene, and Miocene, respectively.

Groundwater Flow Modeling and Suggestion for Pumping Rate Restriction around K-1 Oil Stockpiling Base with Geological Consideration (지질조건을 고려한 K-1 비축기지 주변의 지하수 모델링과 양수량 제한구역 제안)

  • Moon, Sang-Ho;Kim, Kue-Young;Ha, Kyoo-Chul;Kim, Young-Seog;Won, Chong-Ho;Lee, Jin-Yong
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.169-181
    • /
    • 2010
  • This study aimed at simulating several responses to stresses caused by the ground water level variations around the K-1 oil stockpile. For this simulation, we considered the characteristic hydrogeological condition including the special occurrence of long and thick acidic dyke, which is regarded as the main geological structure dominating the ground water flow system at this study area. We activated twenty-four imaginary wells which are located in northern and southern area around central K-1 site. Each neighboring distance is altogether 300 m and whole distance between K-1 site and remote wells is 1,200 m. Through the modeling, we operated the long-term and continuous pumping tests and finally categorized five zones based on maximum pumping rates for the imaginary wells; zone I within 300 meter distance from K-1 site with a pumping rate of 50 $m^3/day$; zone II between 300 to 600 meter distance from K-1 site with a pumping rate of 75 $m^3/day$; zone III between 600 to 900 meter distance from K-1 site with 150 $m^3/day$; zone IV between 900 to 1,200 meter distance from K-1 site with 300 $m^3/day$; and zone V of acidic dyke area. At zone V, especially because of their possibility of high transmissivity for groundwater flow, it is necessary to control and restrict groundwater discharge.

Geology and Constituent Rocks, and Radioactive Values of the Eoraesan Area, Chungju, Korea (충주 어래산지역의 지질 및 구성암류와 방사능 값)

  • Kang, Ji-Hoon;Lee, Deok-Seon;Koh, Sang-Mo
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.85-96
    • /
    • 2018
  • The Neoproterozoic Gyemyeongsan Formation and the Mesozoic igneous rocks are distributed in the Eoraesan area, Chungju which is located in the northwestern part of Ogcheon metamorphic zone, Korea, and the rare earth element (REE) mineralized zone has been reported in the Gyemyeongsan Formation. We drew up the detailed geological map by the lithofacies classification, and measured the radioactivity values of the constituent rocks to understand the distribution and characteristics of the source rocks of REE ore body in this paper. It indicates that the Neoproterozoic Gyemyeongsan Formation is mainly composed of metapelitic rock, granitic gneiss, iron-bearing quartzite, metaplutonic acidic rock (banded type, fine-grained type, basic-bearing type, coarse-grained type), metavolcanic acidic rock, and the Mesozoic igneous rocks, which intruded it, are divided into pegmatite, biotite granite, gabbro, diorite, basic dyke. The constituent rocks of Gyemyeongsan Formation show a zonal distribution of mainly ENE trend, and the distribution of basic-bearing type of metaplutonic acidic rock (MPAR-B) is very similar to that of the previous researcher's REE ore body. The Mesozoic biotite granite is regionally distributed unlike the result of previous research. The radioactive value of MPAR-B, which has a range of 852~1217 cps (average 1039 cps), shows a maximum value among the constituent rocks. The maximum-density distribution of radioactive value also agrees with the distribution of MPAR-B. It suggests that the MPAR-B could be a source rock of the REE ore body.

Geological Structures of the Limesilicates in the Songgang-ri, Cheongsong-gun, Korea (청송군 송강리 석회규산염암류의 지질구조)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.139-151
    • /
    • 2018
  • The Songgang-ri area, Cheongsong-gun, which is located in the Sobaeksan province of Yeongnam Massif near the southwestern boundary of Yeongyang subbasin of Gyeongsang Basin, consists of age unknown metamorphic rocks (banded gneiss, granitic gneiss, limesilicates) and age unknown igneous rock (granite gneiss) which intrudes them. This paper researched the geological structures of the Songgang-ri area from the geometric and kinematic features and the developing sequence of multi-deformed rock structures in the geological outcrops exposed about 170 m along the riverside of Yongjeoncheon in the eastern part of Songgang village, Songgang-ri. In the Songgang-ri geological outcrops are recognized three times (Fn, Fn+1, Fn+2) of folding, three times (Dk-I, Dk-II, Dk-III) intrusion of acidic dykes, one time of faulting, which are different in deformation and intrusion timing each other. These geological structures are at least formed by five times (Dn, Dn+1, Dn+2, Dn+3, Dn+4) of deformation. The Dn deformation is recognized by Fn fold which axial surface is parallel to the regional foliation. The Dn+1 intruded the (E)NE trending Dk-I dyke in the earlier phase and formed the NW trending Fn+1 fold in the later phase under compression of (E)NE-(W)SW direction. There are tight, isoclinal, intrafolial folds, boudinage, ${\sigma}$- or ${\delta}$-type boudins, asymmetric fold, C' shear band as the major deformed rock structures. The Dn+2 intruded the (N)NW trending Dk-II dyke in the earlier phase and formed NE trending Fn+2 fold in the later phase under compression of (N)NW-(S)SE direction. There are open fold and folded boudinage as those. The Dn+2 intruded the Dk-III dyke which cuts the Dk-I and Dk-II dykes and the axial surface of Fn+2 fold. The Dn+3 formed the left-handed reverse oblique-slip fault of NNE trend in which hanging wall moves into the SSE direction. Considering in that such five times of deformation recognized in the Songgang-ri geological outcrops are closely connected to the distribution and geological structure of the constituents in the more regional area as well as Songgang-ri area, the research result is expected to play a great data in clarifying and understanding the geological structure and its development process of the surrounding and boundary constituents of the Yeongnam Massif and Gyeongsang Basin.

Paleogene dyke swarms in the eastern Geoje Island, Korea: their absolute ages and tectonic implications (거제도 동부에 분포하는 고제3기 암맥군: 절대연대와 지구조적 의미)

  • Son, Moon;Kim, Jong-Sun;Hwang, Byoung-Hoon;Lee, In-Hyun;Kim, Jeong-Min;Song, Cheol-Woo;Kim, In-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.2 s.48
    • /
    • pp.82-99
    • /
    • 2007
  • The Paleogene dikes intruding into the late Cretaceous granodiorite are pervasively observed in the Irun-myeon, eastern Geoje Island. They are classified into three groups: NW-trending acidic dike swarm and WNW- (A-Group) and $NS{\sim}NNE-trending$ (B-Group) basic dike swarms. Based on their cross-cutting relationships, the earliest is the acidic dike group and fellowed by A- and B-Groups in succession. The acidic dikes seem to have intruded into tension gashes induced by the sinistral strike-slip faulting of the Yangsan fault system during the late $Cretaceous{\sim}early$ Paleogene. In terms of rock-type, orientation, age, and geochemistry, A-Group and B-Group are intimately correlated with the intermediate and basic dike swarms in the Gyeongju-Gampo area, respectively. These results significantly suggest that the corresponding dike swarms are genetically related. Based on the K-Ar and Ar-Ar age data, A- and B- Groups were intruded during $64{\sim}52\;Ma$ and $51{\sim}44\;Ma$, respectively. The result means that the direction of tensional stress in and around the SE Korean peninsula was changed abruptly from NNE-SSW to $EW{\sim}WNW-ESE$ at about 51 Ma. Considering the tectonic environments during the Paleogene, it is interpreted that A-Group was injected along the WNW-trending tensional fractures developed under an regional sinistral simple shear regime which was caused by the north-northwestward oblique subduction of the Pacific plate beneath the Eurasian plate. Meanwhile, the regional stress caused by the collision of India and Eurasia continents at about 55 Ma was likely propagated to the East Asia at about 51 Ma, and then the East Asia including the Korean peninsula was extruded eastwards as a trench-rollback and the dip of downgoing slab of the Pacific plate was abruptly steepened. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in and around the Korean peninsula, which resultantly induced B-Group to intrude passively into the study area.

Tephra Origin of Goryeri Archaeological Site, Milyang Area, Korea (밀양 고례리 화산 유리물질 기원 해석)

  • 김주용;양동윤;박영철
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 1999
  • Goryeri archaeological site is located in the upstream valley of the Danjang River. The basement rocks of the area are composed of the Cretaceous to Palaeogene biotite granite (KbGr), acidic dyke (Kad), Milyang Andesite (Kma) and Jyunggagsan Formation. Among them Milyang Andesite and Jyunggagsan Formation are prevailed in archaeological site and they are composed of reddish brown tuffaceous shale, sandstone and conglomerate, with intercalations of acidic tuffs and lapilli tuffs. The purpose of this research is not only to compare REE pattern of the soil-sedimentary deposits with those of surrounding rocks, but also to identify vitric tephra in the soil-sedimentary deposits derived from the andesite, acidic tuff and lapilii tuff, in order to illucidate the provenance of the vitric tephra. The rare earth element(REE) of the soils and sedimentary deposits results in the same REE pattern with those analyzed from the surrounding basement rocks. This indicates that the soils and sedimentary deposits are originated from the surrounding basement rocks, most probably from the andesite and lapilli tuff. In addition, vitric tephra were identified both in the Quaternary in-situ weathered soils and sedimentary deposits (PMU-13 and PMU-17), and in the weathered surrounding lapilli tuff. These vitric tephra are considered to be different from those of Japanese AT(Aira Tanzawa) -tephra. The latter is predominant with clean, platty, bubble-walled and Y-shaped vitrics, while the former is conspicuous with those shapes of large and diverse size and devitrified, as well as having secondarily bubbled-surfaces reflecting surface weathering. The size of vitric fragments in the Goryeri site is about 300${\mu}{\textrm}{m}$ and large in size in compasion to 150${\mu}{\textrm}{m}$ of Japanese AT-Tephra. The interim results of the research are contradictary to the explanations based on a series of AT-tephra researches carried by Japanese scholar. In short, the vitric materials of the Goryeri archaeological site are most probably originated from the weathering products of the surrounding basement rocks, and are different from the AT-tephra in their size, shape and devitrification properties. Thus it is highly recommended to have a further comprehensive research which is more emphasized the magmatic genesis of these vitric tephra in addition to the external shape and morphology.

  • PDF

Occurrence, Geochemistry and Origin of $Co_2$-rich Water from the Chungcheong Area, Korea (충청지역 탄산수의 산출양상, 지화학적 특성 및 생성기원)

  • 정찬호;김종근;이재영
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.227-241
    • /
    • 2001
  • Several $Co_2$-rich springs in the Chungcheong area, Le., the Angsung spring, the Chojung spring, the Myungam spring, the Bukang spring and the Daepyung spring have been long known for their particular water chemistry. The occurrences of these springs are closely related to the geologic structure of Mesozoic granite such as dyke swarms, fault zones and the geologic boundary between granite and its adjacent gneiss. The $Co_2$-rich water samples show a high $Co_2$ concentration ($P_{CO2}$ 0.25 atm to 0.99 atm), weak acidic pHs and the electrical conductivity ranging from 101 to 2,950 ${\mu}$S/cm. The $Co_2$-rich water samples are classified into the Ca-$HC0_3$ type and the Ca(Na)-$HCO_3$) type in chemical composition. Environmental isotopic data $^{2}H/^{1}H, ^{18}O/^{16}O$) indicated that $Co_2$-rich water was meteoric origin. The ${\delta}^{13}C$ values of $Co_2$-rich water range from -3.1$\textperthousand$ to -6.8$\textperthousand$ PDB. The values indicate that $H_2CO_3^0$ and $HC0_3^-$ of the water samples are mainly originated from a deep-seated source and partly contributed from carbonatc minerals. The major minerals determining the chemistry of $Co_2$-rich watcr arc probably the carbonate minerals which are present as veins and secondary minerals, and the plagiocalse in granite and gneiss.

  • PDF