• Title/Summary/Keyword: actuation

Search Result 754, Processing Time 0.025 seconds

Design/Manufacturing/Performance-Test of Stacked Ceramic Thin Actuation Layer IDEAL Using Interdigitated Electrodes (빗살형 전극을 이용한 적층 세라믹 박판 작동층 IDEAL의 설계/제조/성능시험)

  • 이제동;박훈철;구남서;윤영수;윤광준
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.216-220
    • /
    • 2004
  • This paper is concerned with the development of stacked ceramic thin actuation layer IDEAL (InterDigitated Electrode Actuation Layer) using d$_{33}$ actuation mechanism of piezoelectric ceramic. Most of the thin piezoelectric actuators are operated with d$_{31}$ actuation mechanism. Many kinds of piezoelectric ceramic actuators are strived now to improve the actuation performance. One of efforts to improve performance of piezoceramic actuators is the research trying to develop an actuator using the piezoelectric coefficient d$_{33}$ . The piezoelectric coefficient d$_{33}$ is almost twice larger than piezoelectric coefficient d$_{31}$ . Therefore, the induced strain of PZT thin layer with d$_{33}$ 3 actuation mechanism is bigger than that with d$_{31}$ actuation mechanism. The AFC(MIT) and LaRC-MFC$^{TM}$ which is developed by a research team of NASA Langley Research Center used d$_{33}$ actuation mechanism with surface interdigitated electrode to enhance its actuation performance. But their actuation mechanism is not perfect d$_{33}$ actuation mechanism since the interdigitated electrodes are placed at the surface of the actuation layer. In this research, the stacked ceramic thin actuation layer with imbedded interdigitated electrode is designed and manufactured. The actuation strain of stacked ceramic thin actuation layer is measured and compared with the actuation strain of the LaRC-MFC$^{TM}$. The comparison shows that the developed stacked ceramic thin actuation layer can produce 15% more actuation strain than LaRC-MFC$^{TM}$.> TM/.

Analysis of parallel manipulators with actuation redundancy (잉여 구동 병렬형 로봇의 해석)

  • 김성복;김순석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.535-538
    • /
    • 1996
  • This paper presents the kinematic and dynamic analysis of parallel manipulators with actuation redundancy, obtained by replacing the passive joints of an existing parallel manipulator with the active ones. We develop the kinematic and dynamic models of a parallel manipulator with actuation redundancy. The multiplicity in selecting the controllable active joints among the increased number of active joints is considered in the modeling. Based on the derived models, we define the kinematic and dynamic manipulabilities of a parallel manipulator with actuation redundancy. The effect of the actuation, redundancy on the performance of parallel manipulators is analyzed in terms of kinematic and dynamic manipulabilities.

  • PDF

Optimal Redundant Actuation of Parallel Manipulators with High Operational Stiffness (고강성 병렬형 로봇의 최적 여유 구동)

  • Kim, Sung-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.181-189
    • /
    • 2000
  • This paper presents the optimal redundant actuation of parallel manipulators for complicated robotic applications such as cutting grinding drilling and digging that require a high degree of operational stiffness as well as the balance between force applicability and dexterity. First by taking into account the distribution(number and location) of active joints the statics and the operational stiffness of a redundant parallel manipulator are formulated and the effects of actuation redundancy are analyzed, Second for given task requirements including joint torque limit task force maximum allowable disturbance and maximum allowable deflection the task execution conditions of a redundant parallel manipulator are derived and the efficient testing formulas are provided. Third to achieve high operational stiffness while maintaining moderate dexterity the redundant actuation of a parallel manipulator is optimized which determines the optimal distribution of active joints and the optimal internal joint torque, Finally the simulation results for the optimal redundant actuation of a planar parallel manipulator are given.

  • PDF

CONTROL OF CIRCULAR CYLINDER WAKE USING PLASMA ACTUATION (플라즈마 가진에 의한 원형 실린더 후류의 제어)

  • Kim, Dong-Joo
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2012
  • Numerical simulations are carried out for flow over a circular cylinder controlled by the momentum forcing which is generated by a pair of plasma actuators symmetrically mounted on the cylinder surface. A popular and empirical plasma model is used for the spatial distribution of momentum forcing. In this study, we consider two different types of actuation, i.e., steady and unsteady (or pulsed) actuation. In the unsteady actuation, the actuation is turned on and off periodically, its frequency being a control parameter. The objective of this study is to investigate the effects of actuator location and actuation frequency on the flow structures and the forces on the cylinder. Results show that the cylinder wake can be effectively controlled by proper actuator location. For example, when the actuators are located at $120^{\circ}$ from the stagnation point, vortex shedding is completely suppressed with the boundary layer almost fully attached to the surface, resulting in drag reduction and lift elimination.

A Soft Actuation System with Origami Pump for Maximizing Haptic Feedback (햅틱 피드백 극대화를 위한 오리가미 펌프 기반의 소프트 구동기 시스템)

  • Jung, Pyeong-Gook;Jang, Hyukjoon;Cha, Youngsu
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.29-34
    • /
    • 2021
  • Traditional actuation system such as electric and pneumatic actuator has obvious advantages and disadvantages. To combine advantages and compensate disadvantages of the traditional actuation, a pneumatic actuation system with an internal air pressure source is noteworthy approach. In this paper, a soft pneumatic actuation system based on origami pump is described for haptic feedback glove. To improve wearability, an origami pump is introduced because the origami pump is much lighter than air compressor. The miniaturized electric actuation system is also designed with 3D printed planetary gear in order to reduce the volume of the system. To figure out the performance of the system, shrinkage distance of origami pump was measured with vision camera. The pressure in the origami pump was also estimated to understand the performance of the system.

CONTROL OF SQUARE CYLINDER FLOW USING PLASMA SYNTHETIC JETS (플라즈마 합성제트를 이용한 사각 실린더 유동의 제어)

  • Kim, Dong-Joo;Kim, Kyoung-Jin
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.85-92
    • /
    • 2012
  • Flows over a square cylinder with and without plasma actuation are numerically investigated to see whether plasma actuation can effectively modify vortex shedding from the cylinder and reduce the drag and lift fluctuations. In this study, a plasma synthetic jet actuator is mounted on the rear side of cylinder as a means of direct-wake control. The effect of plasma actuation is considered by adding a momentum forcing term in the Navier-Stokes equations. Results show that the reduction of mean drag and lift fluctuations is obtained for both steady and unsteady actuation. However, the steady actuation is better than the unsteady one in terms of mean drag as well as drag fluctuations. With the strong steady actuation considered, the interaction of two separating shear layers from rear corners is effectively weakened due to the interference of synthetic jets. It results in a merging of synthetic-jet and shear-layer vortices and the increase of vortex shedding frequency. On the other hand, the unsteady actuation generates pulsating synthetic jets in the near wake, but it does not change the vortex shedding frequency for the actuation frequencies considered in this study.

Structural modeling of actuation of IPMC in dry environment: effect of water content and activity

  • Swarrup, J. Sakthi;Ranjan, Ganguli;Giridhar, Madras
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.553-565
    • /
    • 2017
  • Structural modeling of unencapsulated ionic polymer metal composite (u-IPMC) actuators that are used for flapping the insect scale-flapping wing of micro air vehicles (FMAV) in dry environmental conditions is carried out. Structural modeling for optimization of design parameters for retention of water, maximize actuation performance and to study the influence of water activity on the actuation characteristics of u-IPMC is explored for use in FMAV. The influence of equivalent weight of Nafion polymer, cations, concentration of cations, pre-treatment procedures on retention of water of u-IPMCs and on actuation parameters, flapping angle, flexural stiffness and actuation displacement are investigated. IPMC designed with Nafion having equivalent weight 900-1100, pre-heated at $30^{\circ}C$ and with sodium as the cations is promising for optimum retention of water and actuation performance. The actuation parameters while in operation in dry and humid environment with varying water activity can be tuned to desirable frequency, deflection, flap angle and flexural stiffness by changing the water activity and operational temperature of the environment.

A Robust Control System Design for Compensating Hysteresis of a Piezoelectric Actuator-based Actuation Unit (압전 소자 기반 구동 유닛의 히스테리시스 보상 강인 제어기 설계)

  • Kim, Hwa-Soo;Kim, Jong-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.324-330
    • /
    • 2012
  • In this paper, we presents a robust control system design for compensating hysteresis of a piezoelectric actuator-based actuation unit. First, the dynamics between the input voltage and the output displacement of the actuation unit are unravelled via a non-parametric system identification method. From the dynamic characteristics of those experimental transfer functions, a parametric model is then derived, whose dynamics match those of the non-parametric ones under various conditions on input voltages. A robust controller is constructed on the basis of this parametric model in order not only to effectively compensate the hysteresis of the actuation unit but also to guarantee the robust stability. Extensive experiments show that the proposed robust control system successfully mitigate the effect of the hysteresis and improve the tracking capability of the actuation unit.

Performance Analysis and Optimal Actuator Sizing for Anthropomorphic Robot Modules with Redundant Actuation (여유구동 인체형 로봇 모듈의 성능해석 및 구동장치 최적설계)

  • 이상헌;이병주;곽윤근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.181-192
    • /
    • 1995
  • In this study, we introduce new types of planar 2 degree-of-freedom robot modules resembling the musculoskeletal structure of the human arm with actuation redundancy. First, for the given actuator sizes the performance analysis for the manipulator with redundant actuation and without redundant actuation is performed with respect to maximum load handling capacity, maximum hand velocity, and maximum hand acceleration. Secondly an algorithm which decides optimal actuator sizes for the given operational performances is introduced, and the optimal actuator sizes for a robot module with four redundant actuation are obtained. The algorithms employed in this paper will be useful to analyze the robot performances and to determine the actuator sizes for general robot manipulators.

Development of a New Inchworm Actuation System U sing Piezoelectric Shearing Actuators (전단압전가진기를 이용한 인치웜 가진시스템의 개발)

  • Lee, Sang-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.81-88
    • /
    • 2007
  • This paper presents the development of a new inchworm actuation system using the shearing deformation of the piezoelectric actuators. In this new actuation system, piezoelectric shearing/expanding actuators, an inertial mass and an advanced preload system are configured innovatively to generate the motion of an inertial mass. There are two modes in the new actuation system: (1) stick mode, and (2) clamp mode. In stick mode, the deformation of the piezoelectric shearing actuators drives an inertial mass by means of the friction force at their contact interface. On the other hand, in clamp mode, the piezoelectric expanding actuators provide the gripping force to an inertial mass and, as a result, eliminate its backward motion following the rapid backward deformation of the piezoelectric shearing actuators. To investigate the feasibility of the proposed new actuation system, the experimental system is built up, and the static performance evaluation and dynamic analysis are conducted. The open-loop performance of the linear motion of the proposed new actuation system is evaluated. In dynamic analysis, the mathematical model for the contact interface is established based on the LuGre friction model and the equivalent parameters are identified.