• Title/Summary/Keyword: adaptive switching median filter

Search Result 9, Processing Time 0.032 seconds

Adaptive Switching Median Filter for Impulse Noise Removal Based on Support Vector Machines

  • Lee, Dae-Geun;Park, Min-Jae;Kim, Jeong-Ok;Kim, Do-Yoon;Kim, Dong-Wook;Lim, Dong-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.871-886
    • /
    • 2011
  • This paper proposes a powerful SVM-ASM filter, the adaptive switching median(ASM) filter based on support vector machines(SVMs), to effectively reduce impulse noise in corrupted images while preserving image details and features. The proposed SVM-ASM filter is composed of two stages: SVM impulse detection and ASM filtering. SVM impulse detection determines whether the pixels are corrupted by noise or not according to an optimal discrimination function. ASM filtering implements the image filtering with a variable window size to effectively remove the noisy pixels determined by the SVM impulse detection. Experimental results show that the SVM-ASM filter performs significantly better than many other existing filters for denoising impulse noise even in highly corrupted images with regard to noise suppression and detail preservation. The SVM-ASM filter is also extremely robust with respect to various test images and various percentages of image noise.

A Study on Modified Adaptive Median Filter for Impulse Noise Removal (임펄스 잡음 제거를 위한 변형된 적응 메디안 필터에 관한 연구)

  • Long, Xu;An, Young-Joo;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.804-806
    • /
    • 2014
  • During the transmission process of processing of image, various noises are added causing an error to the image. In order to restore these images, methods such as alpha trimmed average filter, standard median filter and switching median filter were proposed but such previous methods has insufficient noise suppression characteristics. Therefore in this paper, in order to remove the impulse noise added to the image, an adaptive median filter algorithm modified to expand the mask according to the noise density of mask pixels was proposed.

  • PDF

Adjacent Pixels based Noise Mitigation Filter in Salt & Pepper Noise Environments (Salt & Pepper 잡음 환경에서 인접 픽셀 기반 잡음 완화 필터)

  • Seong, Chi Hyuk;Shin, Soo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.65-71
    • /
    • 2017
  • Digital images and videos are subject to various types of noise during storage and transmission. Among these noises, Salt & Pepper noise degrades the compression efficiency of the original data and causing deterioration of performance in edge detection or segmentation used in an image processing method. In order to mitigate this noise, there are many filters such as Median Filter, Weighted Median Filter, Center Weighted Median Filter, Switching Weighted Median Filter and Adaptive Median Filter. However these methods are inferior in performance at high noise density. In this paper we propose a new type of filter for noise mitigation in wireless communication environment where Salt & Pepper noise occurs. The proposed filter detects the location of the damaged pixel by Salt & Pepper noise detection and mitigates the noise by using adjacent pixel values which are not damaged in a certain area. Among the proposed filters, the performance of the filter using the $3{\times}3$ error mask is compared with that of the conventional methods and it is confirmed that when density of noise in the image is 95%, their performances are improved as 13.24 dB compared to MF and 13.09 dB compared to AMF.

A Modified Adaptive Switching Median Filter for Image Restoration (영상복원(映像復原)을 위한 변형(變形)된 적응(適應) 스위칭 메디안 필터)

  • Jin, Bo;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1373-1379
    • /
    • 2007
  • A modified adaptive switching median filter for impulse noise removal, which has the noise detection step and the noise filtering step, is proposed in this paper. In the noise detection step, we use the detection threshold which is earned by calculating the intensity differences between pixels nearby with each other in localized window, to determine whether the pixels in the image are noise or not. Then in the noise filtering step, we will only remove the corrupted pixels and remain the good pixels. By the noise detection result, we can easily get the local noise density of the image, and use it to consider the filtering mask size and the times of filtering iteration according to different localized noise corruptions. For Setting the simulation result, we compared the proposed method to conventional median filters with several test images corrupted by various impulse noise densities. We also use the peak signal-to-noise ratio (PSNR) to evaluate restoration performance, the simulation results demonstrate that the proposed method shows better results than other median-based type filters.

Modified Adaptive Switching Median Filter using Noise Density in Salt and Pepper Noise Environment (Salt and Pepper 잡음 환경에서 잡음 밀도를 이용한 변형된 적응 스위칭 메디안 필터)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.916-918
    • /
    • 2015
  • Image processing is being spotlighted as an important sector with increasingly diverse applications as the society advances into a sophisticated digital information age. Especially, the image restoration as the core technology of image processing, many studies are being progressed. In this paper, in order to restore the damaged image in the Salt and Pepper noisy environment, a modified adaptive switching median filter where the size of local mask can be varied according to the noise density was proposed. And using the PSNR as the standard for objective decision making of the improvement effect, it was compared with the existing methods.

  • PDF

A Study on Cascade Filter Algorithm for Random Valued Impulse Noise Elimination (랜덤 임펄스 잡음제거를 위한 캐스케이드 필터 알고리즘에 관한 연구)

  • Yinyu, Gao;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.598-604
    • /
    • 2012
  • Image signal is corrupted by various noises in image processing, many studies are being accomplished to restore those images. In this paper, we proposed a cascade filter algorithm for removing random valued impulse noise. The algorithm consists two steps that noise detection and noise elimination. Variance of filtering mask and center pixel variance are calculated for noise detection, and the noise pixel is replaced by estimated value which first apply switching self adaptive weighted median filter and finally processed by modified weight filter. Considering the proposed algorithm only remove noise and preserve the uncorrupted information that the algorithm can not only remove noise well but also preserve edge.

A Study on Removing Impulse Noise using Modified Adaptive Switching Median Filter (변형된 적응 스위칭 메디안 필터를 이용한 임펄스 잡음제거에 관한 연구)

  • Gao, Yinyu;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2474-2479
    • /
    • 2011
  • As society has developed rapidly toward a highly advanced digital information age, a multimedia communication service for acquisition, transmission and storage of image data as well as voice has being commercialized. However, image data is always corrupted by various noises during image processing, so researches for removing noises have been continued until now. In this paper, in order to remove impulse noise we proposed modified adaptive switching median filter that consists of two stages: noise detection and noise removal. Proposed algorithm only processes noise pixels and these noise pixels are replaced by filter output, so proposed algorithm performs well not only removes noise but also preserves edge information. Also we compare existing methods using PSNR(peak signal to noise ratio) as the standard of judgement of improvement effect and choose conventional algorithms to compare with our proposed method.

A Mixed Nonlinear Filter for Image Restoration under AWGN and Impulse Noise Environment

  • Gao, Yinyu;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.591-596
    • /
    • 2011
  • Image denoising is a key issue in all image processing researches. Generally, the quality of an image could be corrupted by a lot of noise due to the undesired conditions of image acquisition phase or during the transmission. Many approaches to image restoration are aimed at removing either Gaussian or impulse noise. Nevertheless, it is possible to find them operating on the same image, which is called mixed noise and it produces a hard damage. In this paper, we proposed noise type classification method and a mixed nonlinear filter for mixed noise suppression. The proposed filtering scheme applies a modified adaptive switching median filter to impulse noise suppression and an efficient nonlinear filer was carried out to remove Gaussian noise. The simulation results based on Matlab show that the proposed method can remove mixed Gaussian and impulse noise efficiently and it can preserve the integrity of edge and keep the detailed information.

An Image Restoration using Nonlinear Filter in Mixed Noise Environment (복합잡음 환경에서 비선형 필터를 사용한 영상복원)

  • Long, Xu;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2447-2453
    • /
    • 2013
  • The digital images are being degraded by noise in the process of acquisition, storage and transmission, Gaussian or impulse noise is the representative noise. Meanwhile, the image has lots of tendency to be degraded by complex noise, so various researches are being conducted for reducing these complex noise. In this paper, to remove complex noise, the algorithm processed by modified switching median filter and modified adaptive weighted filter according to the result after judging the kinds of noise is proposed. In the simulation result, excellent denoising capabilities. Furthermore, we compared proposed algorithm with existing methods for objective judgement, and PSNR(peak signal to noise ratio) is used by the criterion of judgement.