• Title/Summary/Keyword: additional rail stress

Search Result 23, Processing Time 0.024 seconds

Interaction analysis of Continuous Slab Track (CST) on long-span continuous high-speed rail bridges

  • Dai, Gonglian;Ge, Hao;Liu, Wenshuo;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.713-723
    • /
    • 2017
  • As a new type of ballastless track, longitudinal continuous slab track (CST) has been widely used in China. It can partly isolate the interaction between the ballastless track and the bridge and thus the rail expansion device would be unnecessary. Compared with the traditional track, CST is composed of multi layers of continuous structures and various connecting components. In order to investigate the performance of CST on a long-span bridge, the spatial finite element model considering each layer of the CST structure, connecting components, bridge, and subgrade is established and verified according to the theory of beam-rail interaction. The nonlinear resistance of materials between multilayer track structures is measured by experiments, while the temperature gradients of the bridge and CST are based on the long-term measured data. This study compares the force distribution rules of ballasted track and CST as respectively applied to a long span bridge. The effects of different damage conditions on CST structures are also discussed. The results show that the additional rail stress is small and the CST structure has a high safety factor under the measured temperature load. The rail expansion device can be cancelled when CST is adopted on the long span bridge. Beam end rotation caused by temperature gradient and vertical load will have a significant effect on the rail stress of CST. The additional flexure stress should be considered with the additional expansion stress simultaneously when the rail stress of CST requires to be checked. Both the maximum sliding friction coefficient of sliding layer and cracking condition of concrete plate should be considered to decide the arrangement of connecting components and the ultimate expansion span of the bridge when adopting CST.

Analysis of Track-Bridge Interaction and Retrofit Design for Installation of CWR on Non-ballasted Railway Bridge (무도상 철도교 레일 장대화를 위한 궤도-교량 상호작용 해석 및 개량방안 분석)

  • Yoon, Jae Chan;Lee, Chang Jin;Jang, Seung Yup;Choi, Sang Hyun;Park, Sung Hyun;Jung, Hyuk Sang
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • This study investigated the change of additional axial stress of rail and reaction force at bridge bearings due to the track-bridge interaction when laying CWR on non-ballasted railway bridges including truss bridges with relatively long span. According to the results of the present study, additional axial stresses of rail and reaction forces at bridge bearings showed a large increase when CWR is installed on the non-ballasted railway bridge. The additional axial stress of rail can be acceptable if sufficient lateral resistance can be obtained. However, if the reaction force increases, there is a risk of damage of the bearing or pier, and therefore, it is necessary to take measures to mitigate the reaction force. It is found that additional axial stress of rail decreases when considering the frictional resistance of the bridge movable support, but its effect on the bearing reaction force is very small. On the other hand, when the longitudinal track restraint decreases, both additional axial stress of rail and bearing reaction force are reduced to a large extent. Also, when the ZLR fastening devices are applied to the region where the additional axial stress of rail is highest, bearing reaction force as well as additional axial stress of rail greatly decreased. Therefore, the application of ZLR fastening devices with the reduction of the longitudinal track restraints is very effective for installing CWR on non-ballasted railway bridges.

Safety Evaluation on Interaction between Track and Bridge in Continuous Welded Railway Bridge Considering Seismic Load (지진하중을 고려한 장대레일교량의 궤도-교량 상호작용에 대한 안전성 평가)

  • Shim, Yoon-Bo;Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.40-48
    • /
    • 2016
  • To observe the rail-slab interaction in continuous welded railway(CWR) bridge when earthquake occurs, additional axial rail stresses and relative longitudinal displacements between rail and bridge deck were calculated with input of various load combinations and 3 different types of seismic loads to an analytical model. As results of analysis, it can be found that standard response spectrum proposed by Korea Rail(KR) network authority for earthquake design showed less additional axial rail stresses than allowable levels, but greater relative longitudinal displacement between rail and bridge deck, which means that adjustment of relative longitudinal displacement within a standard level is much more difficult than axial train stress. Additionally, if a large-scaled earthquake as occurred at Kobe, Japan comes up, then both of additional axial rail stress and relative displacement in rail-bridge deck may exceed allowable levels, which indicates to make proper design guides against sudden earthquake occurrence.

Development of Design Chart for Investigating an Additional Rail Stress and Displacement on CWR(II) - Design Chart for Railway Bridge of Conventional Line (장대레일 부가축력 및 변위 검토를 위한 설계차트 개발(II) - 일반철도 교량 설계차트)

  • Choi, Il-Yoon;Lim, Yun-Sik;Yang, Sin-Chu;Choi, Jin-Yu
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.574-581
    • /
    • 2009
  • Displacement of the bridge and additional rail stress due to interaction between track and bridge should be limited to the design criteria. Interaction analysis was conducted to investigate the displacement and additional rail stress on CWR in railway bridge of conventional line. Particularly, various parameters affecting interaction phenomena were taken into account in the analysis to enhance an applicability. These parameters included configuration of structure, stiffness of deck and support, steel/concrete bridge, ballast/concrete track and FM/MFM type etc. The results were presented in the form of the design chart which could be useful in preliminary design of the bridge.

Development of Design Chart for Investigating an Additional Rail Stress and Displacement on CWR(I) - Design Chart for High Speed Railway Bridge (장대레일 부가축력 및 변위 검토를 위한 설계차트 개발(I) - 고속철도 교량 설계차트)

  • Choi, Il-Yoon;Cho, Hyun-Cheol;Yang, Sin-Chu;Choi, Jin-Yu;Yu, Jin-Young
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.565-573
    • /
    • 2009
  • Displacement of the bridge and additional rail stress due to interaction between track and bridge should be limited to the design criteria. Interaction analysis was conducted to investigate the displacement and additional rail stress on CWR in high speed railway bridge. Particularly, various parameters affecting interaction phenomena were taken into account in the analysis to enhance an applicability. These parameters included configuration of structure, stiffness of deck and support, steel/concrete bridge, ballast/concrete track and FM/MFM type etc. The results were presented in the form of the design chart which could be useful in preliminary design of the bridge.

A study on the axial force and displacement characteristics of turnout on a bridge (분기기와 교량의 상호작용 특성에 관한 연구)

  • Yang, Shin-Chu;Kim, In-Jae;Kim, Eun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1306-1311
    • /
    • 2006
  • Most of design parameters of Railway Structures are determined by the serviceability requirements, rather than the structural safety requirements. The serviceability requirements come from Ensuring of Running Safety and Ride Comfort of Train, Reduction of Track Maintenance Work Track-Bridge Interaction should be considered in the design of railway structures. In this study, a numerical method which precisely evaluate an axial force in rail and a rail expansion and contraction when turnout exist in succession on a CWR on a ballasted or on a ballastless track of bridge is developed. From the parameter studies using the developed method, additional stress of stock rail almost 25% is generated due to stock and lead rail interaction, even embankment not bridge. In case of ballasted track, additional stress of stock rail on bridge is very greater than on embankment, and therefore require detailed review in bridge design with turnout. Stresses of turnout rails on bridge are very sensitive according to the installed positions. In case of ballastless track, Stresses of turnout rails are similar as those of normal track

  • PDF

Design of a Roller Rail for the Drawer of Three-Door Refrigerators Using Taguchi Method (다구찌 기법을 이용한 3 문형 냉장고 서랍용 롤러 레일의 설계)

  • Lee, Boo-Youn;Kim, Je-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.97-105
    • /
    • 2009
  • Optimal design of a roller rail which replaces the ball rail for three-door refrigerators is presented using the finite element analysis and the Taguchi method. Stress and deformation of the roller rail for an initial design are analyzed and evaluated. Optimal design parameters are determined using the Taguchi method. The maximum stress of the optimal design is favorably reduced comparing to the initial design. It is verified through an additional analysis that the drawer on the roller rail will not be derailed even if one opens the drawer with a transverse force.

Influence of Slab Length on behavior of Floating Slab Track by Rail-slab-isolator Longitudinal Interaction

  • Nguyen, Huan Ha;Jang, Seung Yup;Chung, Wonseok
    • International Journal of Railway
    • /
    • v.5 no.4
    • /
    • pp.163-166
    • /
    • 2012
  • Many different types of floating slab track have been developed and installed around the world to reduce vibrations and noise originating in the surrounding environment. The main objective of this study is to examine the influence of slab length on behavior of floating slab track based on rail-slab-isolator interaction. The floating slab track is modeled by the connection between rail, slab, isolator, and slab mat in the transition zone. All elements were assembled in a simplified two-dimensional (2D) finite element model (FEM). The maximum length of FST is then investigated based on the maximum additional rail stress criterion as described in UIC 774-3R since no fully accepted design criteria for the slab length in FST systems currently exist.

A Study on Fatigue Crack Propagation of Rail Steel under Constant and Mixed Mode Variable Amplitude Loadings

  • Kim, Chul-Su;Chung, Kwang-Woo
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.71-76
    • /
    • 2012
  • Recently, axle load, operating speed and traffic density on railroads have had a tendency to increase and thereby cause additional pressure applied on used track. These operating conditions frequently result in service failure due to wear caused by wheel-rail contact and fatigue damage under cyclic loading. Among rail defects, the transverse crack, which has been the most dangerous type of fatigue damages, is developed from the subsurface crack near the rail running face and grows perpendicular to the rail surface. Therefore, it is necessary to investigate systematically the growth behavior of transverse crack for rail steel under mixed mode. In this study, the fatigue crack growth behavior of the transverse crack in rail steel was experimentally investigated under mixed-mode variable amplitude loadings.

Evaluation of Stress Reduction of Continuous Welded Rail of Sliding Slab Track from Track-Bridge Interaction Analysis (궤도-교량 상호작용 해석에 의한 슬라이딩 슬래브 궤도의 장대레일 응력 저감 효과 분석)

  • Lee, Kyoung Chan;Jang, Seung Yup;Jung, Dong-Ki;Byun, Hyung-Kyoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1179-1189
    • /
    • 2015
  • Continuous welded rail on bridge structure experiences typically a large amount of additional longitudinal axial forces due to longitudinal track-bridge interaction under temperature and traction/braking load effect. In order to reduce the additional axial forces, special type of fastener, such as ZLR and RLR or rail expansion joint should be applied. Sliding slab track system is known to reduce the effect of track-bridge interaction by the application of a sliding layer between slab track and bridge structure. This study presents track-bridge interaction analysis results of the sliding slab track and compares them with conventional fixed slab track on bridges. The result shows that the sliding slab track can significantly reduce the additional axil forces of the continuously welded rail, and the difference is more significant for long and continuous span bridge.