• Title/Summary/Keyword: adjoint operator

Search Result 62, Processing Time 0.025 seconds

Derivation of Reverse-Time Migration Operator as Adjoint Operation (어드조인트 연산으로서의 역시간 구조보정 연산자 유도)

  • Ji, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.111-123
    • /
    • 2007
  • Unlike the conventional reverse time migration method which is implemented by simply extrapolating wavefield in reverse time, this paper presents a derivation of another reverse time migration operator as the exact adjoint of the presumed forward wavefield extrapolation operator. The adjoint operator is obtained by formulating the forward time extrapolation operator in an explicit matrix equation form and then taking the adjoint to this matrix equation followed by determining the corresponding operator. The reverse time migration operator as the exact adjoint to the implied forward operator can be used not only as a migration algorithm but also as an adjoint operator which is required in the imaging through an inversion such as least-squares migration.

SELF-ADJOINT INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.845-850
    • /
    • 2002
  • Given vectors x and y in a filbert space H, an interpolating operator for vectors is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i=y_i$, for i = 1, 2 …, n. In this article, we investigate self-adjoint interpolation problems for vectors in tridiagonal algebra.

SELF-ADJOINT INTERPOLATION ON AX = Y IN $\mathcal{B}(\mathcal{H})$

  • Kwak, Sung-Kon;Kim, Ki-Sook
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.685-691
    • /
    • 2008
  • Given operators $X_i$ and $Y_i$ (i = 1, 2, ${\cdots}$, n) acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A acting on $\mathcal{H}$ such that $AX_i$ = $Y_i$ for i= 1, 2, ${\cdots}$, n. In this article, if the range of $X_k$ is dense in H for a certain k in {1, 2, ${\cdots}$, n), then the following are equivalent: (1) There exists a self-adjoint operator A in $\mathcal{B}(\mathcal{H})$ stich that $AX_i$ = $Y_i$ for I = 1, 2, ${\cdots}$, n. (2) $sup\{{\frac{{\parallel}{\sum}^n_{i=1}Y_if_i{\parallel}}{{\parallel}{\sum}^n_{i=1}X_if_i{\parallel}}:f_i{\in}H}\}$ < ${\infty}$ and < $X_kf,Y_kg$ >=< $Y_kf,X_kg$> for all f, g in $\mathcal{H}$.

SELF-ADJOINT INTERPOLATION FOR OPERATORS IN TRIDIAGONAL ALGEBRAS

  • Kang, Joo-Ho;Jo, Young-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.423-430
    • /
    • 2002
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_{}i$ = $Y_{i}$ for i/ = 1,2,…, n. In this article, we obtained the following : Let X = ($x_{i\sigma(i)}$ and Y = ($y_{ij}$ be operators in B(H) such that $X_{i\sigma(i)}\neq\;0$ for all i. Then the following statements are equivalent. (1) There exists an operator A in Alg L such that AX = Y, every E in L reduces A and A is a self-adjoint operator. (2) sup ${\frac{\parallel{\sum^n}_{i=1}E_iYf_i\parallel}{\parallel{\sum^n}_{i=1}E_iXf_i\parallel}n\;\epsilon\;N,E_i\;\epsilon\;L and f_i\;\epsilon\;H}$ < $\infty$ and $x_{i,\sigma(i)}y_{i,\sigma(i)}$ is real for all i = 1,2, ....

SELF-ADJOINT INTERPOLATION ON Ax = Y IN A TRIDIAGONAL ALGEBRA ALGL

  • PARK, DONGWAN;PARK, JAE HYUN
    • Honam Mathematical Journal
    • /
    • v.28 no.1
    • /
    • pp.135-140
    • /
    • 2006
  • Given vectors x and y in a separable Hilbert space H, an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate self-adjoint interpolation problems for vectors in a tridiagonal algebra: Let AlgL be a tridiagonal algebra on a separable complex Hilbert space H and let $x=(x_i)$ and $y=(y_i)$ be vectors in H.Then the following are equivalent: (1) There exists a self-adjoint operator $A=(a_ij)$ in AlgL such that Ax = y. (2) There is a bounded real sequence {$a_n$} such that $y_i=a_ix_i$ for $i{\in}N$.

  • PDF

SELF-ADJOINT INTERPOLATION ON AX=Y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • Kang, Joo Ho;Lee, SangKi
    • Honam Mathematical Journal
    • /
    • v.36 no.1
    • /
    • pp.29-32
    • /
    • 2014
  • Given operators X and Y acting on a separable Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate self-adjoint interpolation problems for operators in a tridiagonal algebra : Let $\mathcal{L}$ be a subspace lattice acting on a separable complex Hilbert space $\mathcal{H}$ and let X = ($x_{ij}$) and Y = ($y_{ij}$) be operators acting on $\mathcal{H}$. Then the following are equivalent: (1) There exists a self-adjoint operator A = ($a_{ij}$) in $Alg{\mathcal{L}}$ such that AX = Y. (2) There is a bounded real sequence {${\alpha}_n$} such that $y_{ij}={\alpha}_ix_{ij}$ for $i,j{\in}\mathbb{N}$.

On lower bounds of eigenvalues for self adjoint operators

  • Lee, Gyou-Bong
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.477-492
    • /
    • 1994
  • For the eigenvalue problem of $Au = \lambda u$ where A is considered as a semi-bounded self-adjoint operator on a Hilbert space, we are used to apply two complentary methods finding upper bounds and lower bounds to the eigenvalues. The most popular method for finding upper bounds may be the Rayleigh-Ritz method which was developed in the 19th century while a method for computing lower bounds may be the method of intermediate eigenvalue problems which has been developed since 1950's. In the method of intermediate eigenvalue problems (IEP), we consider the original operator eigenvalue problem as a perturbation of a simpler, resolvable, self-adjoint eigenvalue problem, called a base problem, that gives rough lower bounds.

  • PDF

SELF-ADJOINT INTERPOLATION ON AX = Y IN ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.29 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • Given operators X and Y acting on a Hilbert space $\cal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, we showed the following : Let $\cal{L}$ be a subspace lattice acting on a Hilbert space $\cal{H}$ and let X and Y be operators in $\cal{B}(\cal{H})$. Let P be the projection onto $\bar{rangeX}$. If FE = EF for every $E\in\cal{L}$, then the following are equivalent: (1) $sup\{{{\parallel}E^{\perp}Yf\parallel\atop \parallel{E}^{\perp}Xf\parallel}\;:\;f{\in}\cal{H},\;E\in\cal{L}\}\$ < $\infty$, $\bar{range\;Y}\subset\bar{range\;X}$, and < Xf, Yg >=< Yf,Xg > for any f and g in $\cal{H}$. (2) There exists a self-adjoint operator A in Alg$\cal{L}$ such that AX = Y.

Datuming by Wavefield Depth Extrapolation (파동장 외삽을 이용한 데이터밍)

  • Ji Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.116-126
    • /
    • 1998
  • I present a datuming scheme for poststack data that uses wavefield depth extrapolation. The method I have developed allows the use of any depth extrapolation technique, such as phase-shift, split-step, and finite-difference extrapolation. I derive the datuming algorithms by transposing and taking the complex conjugate (i.e. taking adjoint) of the corresponding forward modeling operator, which does upward extrapolation from a flat surface to an irregular surface. The exact adjoint relation between the forward modeling operator and the datuming operator is demonstrated algebraically. Testing the poststack datuming algorithms with synthetic data, using several depth extrapolation algorithms, has shown that the method works well.

  • PDF