• Title/Summary/Keyword: aging related diseases

검색결과 238건 처리시간 0.029초

Comparisons of Soluble Klotho Concentration Between Healthy and Patient Cohorts

  • Myeong Kwan Kim;Dongju Jung
    • 대한의생명과학회지
    • /
    • 제29권1호
    • /
    • pp.1-10
    • /
    • 2023
  • Since its first identification in 1995, klotho (KL) has become the most promising gene to consider for suppressing aging and aging-related diseases. KL knockout mice exhibited similar phenotypes found in human with premature aging such as short lifespan, osteoporosis, arteriosclerosis and hearing loss. Genetically modified mice overexpressing KL prolonged lifespan more than 20%. Also, clinical reports have indicated decreased concentration of the circulating KL protein in blood, which is called soluble klotho (sKL), is closely related to development of senile diseases. The best way to discover significance of sKL on the development of the diseases might be comparison of sKL concentration between controls and patients. Here we analyzed published clinical reports identified sKL concentration in the cohorts. The sKL concentrations were displayed using heatmap for better comparison. In most of the senile diseases, disease progression was inversely related with sKL concentration. Hypertension was the only disease had no relationship, while schizophrenia was the only disease had direct proportion to the disease progression. Overall, sKL concentration in blood could be a marker to determine current severity of the senile diseases and even to estimate disease progression for the patients at the onset of their senile diseases.

The role of tRNA-derived small RNAs in aging

  • Seokjun G. Ha;Seung-Jae V. Lee
    • BMB Reports
    • /
    • 제56권2호
    • /
    • pp.49-55
    • /
    • 2023
  • Aging is characterized by a gradual decline in biological functions, leading to the increased probability of diseases and deaths in organisms. Previous studies have identified biological factors that modulate aging and lifespan, including non-coding RNAs (ncRNAs). Here, we review the relationship between aging and tRNA-derived small RNAs (tsRNAs), ncRNAs that are generated from the cleavage of tRNAs. We describe age-dependent changes in tsRNA levels and their functions in age-related diseases, such as cancer and neurodegenerative diseases. We also discuss the association of tsRNAs with aging-regulating processes, including mitochondrial respiration and reduced mRNA translation. We cover recent findings regarding the potential roles of tsRNAs in cellular senescence, a major cause of organismal aging. Overall, our review will provide useful information for understanding the roles of tsRNAs in aging and age-associated diseases.

Recent Advances in Molecular Basis of Lung Aging and Its Associated Diseases

  • Kang, Min-Jong
    • Tuberculosis and Respiratory Diseases
    • /
    • 제83권2호
    • /
    • pp.107-115
    • /
    • 2020
  • Aging is often viewed as a progressive decline in fitness due to cumulative deleterious alterations of biological functions in the living system. Recently, our understanding of the molecular mechanisms underlying aging biology has significantly advanced. Interestingly, many of the pivotal molecular features of aging biology are also found to contribute to the pathogenesis of chronic lung disorders such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis, for which advanced age is the most crucial risk factor. Thus, an enhanced understanding of how molecular features of aging biology are intertwined with the pathobiology of these aging-related lung disorders has paramount significance and may provide an opportunity for the development of novel therapeutics for these major unmet medical needs. To serve the purpose of integrating molecular understanding of aging biology with pulmonary medicine, in this review, recent findings obtained from the studies of aging-associated lung disorders are summarized and interpreted through the perspective of molecular biology of aging.

Longevity through diet restriction and immunity

  • Jeong-Hoon Hahm;Hyo-Deok Seo;Chang Hwa Jung;Jiyun Ahn
    • BMB Reports
    • /
    • 제56권10호
    • /
    • pp.537-544
    • /
    • 2023
  • The share of the population that is aging is growing rapidly. In an aging society, technologies and interventions that delay the aging process are of great interest. Dietary restriction (DR) is the most reproducible and effective nutritional intervention tested to date for delaying the aging process and prolonging the health span in animal models. Preventive effects of DR on age-related diseases have also been reported in human. In addition, highly conserved signaling pathways from small animal models to human mediate the effects of DR. Recent evidence has shown that the immune system is closely related to the effects of DR, and functions as a major mechanism of DR in healthy aging. This review discusses the effects of DR in delaying aging and preventing age-related diseases in animal, including human, and introduces the molecular mechanisms that mediate these effects. In addition, it reports scientific findings on the relationship between the immune system and DR-induced longevity. The review highlights the role of immunity as a potential mediator of the effects of DR on longevity, and provides insights into healthy aging in human.

Role of tea catechins in prevention of aging and age-related disorders

  • Khanna, Arjun;Maurya, Pawan Kumar
    • 셀메드
    • /
    • 제2권1호
    • /
    • pp.2.1-2.11
    • /
    • 2012
  • Tea polyphenols especially catechins have long been studied for their antioxidant and radical scavenging properties. Scientists throughout the world have investigated the usefulness of the regular green tea consumption in several disease conditions. In-vitro and in-vivo experiments on catechins especially epigallocatechingallate have revealed a significant role in many ways. Reactive oxygen species have been increasingly implicated in the pathogenesis of many diseases and important biological processes. Toxic effects of these oxidants, commonly referred to as oxidative stress, can cause cellular damage by oxidizing nucleic acids, proteins, and membrane lipids. Oxidative stress has been related to aging and age related disorders. It is found that in a wide variety of pathological processes, including cancer, atherosclerosis, neurological degeneration, Alzheimer's disease, ageing and autoimmune disorders, oxidative stress has its implications. Catechins have been reported to be useful in combating aging and age related disorders like cancer, cardiovascular disorders and neurodegenerative diseases. In this mini review we will discuss such studies done across the globe.

노화관련 질환에 대한 후성유전의 역할 (The Roles of Epigenetic Reprogramming in Age-related Diseases)

  • 황선화;김경민;김혜경;박민희
    • 생명과학회지
    • /
    • 제33권9호
    • /
    • pp.736-745
    • /
    • 2023
  • 노화란 세포 및 생리 기능이 점진적으로 손상되는 복잡한 과정이다. 알츠하이머, 동맥경화 및 갱년기와 같은 노화와 관련된 질병은 노화가 진행이 되면서 발생된다. 노화와 관련된 질환은 다양한 원인에 의해 발생된다. 그 중 유전적인 변화 없이 유전자 발현을 조절하는 후성유전의 변화는 노화, 그리고 노화와 관련된 질환의 발생에 중요한 조절자로 알려져있다. 이 리뷰에서는 후성유전의 변화가 노화 및 노화와 관련된 질병의 발전과 진행에 어떠한 역할을 하는지에 대해 서술하였다. 노화 중에 일어나는 유전적 변화의 분자적 기전과 이러한 변화가 노화와 관련된 질병에 미치는 영향, 특히 노화와 관련된 질환과 관련된 유전자 발현 양식을 조절하는 RNA 메틸화, DNA 메틸화 및 miRNA에 대해 중점적으로 초점을 맞추었다.

Senotherapeutics and Their Molecular Mechanism for Improving Aging

  • Park, Jooho;Shin, Dong Wook
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.490-500
    • /
    • 2022
  • Aging is defined as physiological dysfunction of the body and a key risk factor for human diseases. During the aging process, cellular senescence occurs in response to various extrinsic and intrinsic factors such as radiation-induced DNA damage, the activation of oncogenes, and oxidative stress. These senescent cells accumulate in many tissues and exhibit diverse phenotypes, such as resistance to apoptosis, production of senescence-associated secretory phenotype, cellular flattening, and cellular hypertrophy. They also induce abnormal dysfunction of the microenvironment and damage neighboring cells, eventually causing harmful effects in the development of various chronic diseases such as diabetes, cancer, and neurodegenerative diseases. Thus, pharmacological interventions targeting senescent cells, called senotherapeutics, have been extensively studied. These senotherapeutics provide a novel strategy for extending the health span and improving age-related diseases. In this review, we discuss the current progress in understanding the molecular mechanisms of senotherapeutics and provide insights for developing senotherapeutics.

Risk Factors for Sarcopenia, Sarcopenic Obesity, and Sarcopenia Without Obesity in Older Adults

  • Kim, Seo-hyun;Yi, Chung-hwi;Lim, Jin-seok
    • 한국전문물리치료학회지
    • /
    • 제28권3호
    • /
    • pp.177-185
    • /
    • 2021
  • Background: Muscle undergoes change continuously with aging. Sarcopenia, in which muscle mass decrease with aging, is associated with various diseases, the risk of falling, and the deterioration of quality of life. Obesity and sarcopenia also have a synergy effect on the disease of the older adults. Objects: This study examined the risk factors for sarcopenia, sarcopenic obesity, and sarcopenia without obesity and developed prediction models. Methods: This machine-learning study used the 2008-2011 Korea National Health and Nutrition Examination Surveys in the analysis. After data curation, 5,563 older participants were selected, of whom 1,169 had sarcopenia, 538 had sarcopenic obesity, and 631 had sarcopenia without obesity; the remaining 4,394 were normal. Decision tree and random forest models were used to identify risk factors. Results: The risk factors for sarcopenia chosen by both methods were body mass index (BMI) and duration of moderate physical activity; those for sarcopenic obesity were sex, BMI, and duration of moderate physical activity; and those for sarcopenia without obesity were BMI and sex. The areas under the receiver operating characteristic curves of all prediction models exceeded 0.75. BMI could predict sarcopenia-related disease. Conclusion: Risk factors for sarcopenia-related diseases should be identified and programs for sarcopenia-related disease prevention should be developed. Data-mining research using population data should be conducted to enhance the effectiveness of early treatment for people with sarcopenia-related diseases through predictive models.

노화(老化)에 대한 연구(硏究) (황제내경(黃帝內經)을 중심으로) (The Study on Aging)

  • 백상룡
    • 대한한의학원전학회지
    • /
    • 제12권2호
    • /
    • pp.176-183
    • /
    • 1999
  • Each life has its own properties that distinguish one another. With this property, Oriental medicine suggests original diagnosis and treament. Our process of aging shows typical outline of cycle, i. e. from one's birth to death. Understanding the life cycle of men gives us very good hint to predict one's state of health, possible diseases, characteristics of disease in each term of his/her life cycle. It's because body and mode of diseases change according to age. Aging starts when $\breve{U}$m Essence(陰精)-the essence one receive from parents-dries up or when Deficient Fire(虛火) soars. Parts that compose our body-bones, muscles, flesh, etc.-gradually weaken and worn out as they no longer get support from Yang-Ki(陽氣), In "Yellow Emperor's Classic", aging starts around one's forties when $\breve{U}$m Essence(陰精) is reduced to less than half. However, what is usually accepted is that women start aging from 49 and men 64, regarding significant geriatric disease. As it is mentioned, aging starts with exhaustion of $\breve{U}$m Essence(陰精) which results in soaring Deficient Fire. Main symptoms are weak mental state due to Sin(神) disorder, and weak physical state due to Spleen and Stomacn(脾胃) disorder. Main principle in treating and preventing diseases related to aging is preserving $\breve{U}$m Essence(陰精), as well as fortifying Ki and Blood(氣血). To do this, Lung(肺)-which collects $\breve{U}$m Essence(陰精), and Kidney(腎) stores-which stores $\breve{U}$m Essence(陰精).

  • PDF

Expression of Senescence-Associated Secretory Phenotype in Senescent Gingival Fibroblasts

  • Sangim Lee
    • 치위생과학회지
    • /
    • 제23권2호
    • /
    • pp.169-175
    • /
    • 2023
  • Background: Although microbial infection is direct cause of periodontal disease, various environmental factors influence the disease severity. Aging is considered a risk factor for oral diseases, with the prevalence of periodontal diseases increasing with age. Moreover, senescence-associated secretory phenotype (SASP) expressed in age-related diseases is a key marker of chronic inflammation and aging phenotypes. Therefore, this study aimed to understand the relevance of senescent cells to periodontal health and disease, investigate the possibility of regulating the expression of aging- and osteolysis-related factors in gingival fibroblasts, and investigate the effect of senescence induction in gingival fibroblasts on osteoclast differentiation in mouse bone marrow-derived macrophages (BMMs). Methods: After stimulation with 400 nM hydrogen peroxidase, human gingival fibroblasts (HGFs) were examined for senescence-associated β-galactosidase. Western blot and enzyme-linked immunosorbent assays were performed to assess the expression of SASP. Osteoclast formation was assessed in BMMs using a conditioned medium (CM) from hydrogen peroxide-stimulated HGFs. Osteoclastic differentiation was investigated using tartrate-resistant acid phosphatase (TRAP) staining and activity. Data analysis was performed using SPSS version 25.0. Results: The expression of senescence-related molecules, including p53, p16, and p21, and the expression of osteolytic factors, including IL-6, IL-8, and IL-17, were found to be significantly higher in the hydrogen peroxide-stimulated HGF than in the control group. Regarding the indirect effects of senescent gingival cells, the number of osteoclasts and TRAP activity increased according to the differentiation of BMM cultured in CM. Conclusion: Our results on the of between osteolytic factors and cellular senescence in gingival fibroblast cells helped to reveal evidence of pathological aging mechanisms. Furthermore, our results suggest that the development of novel therapies that target specific SASP factors could be an effective treatment strategy for periodontal disease.