• Title/Summary/Keyword: air pumping

Search Result 169, Processing Time 0.024 seconds

CFD/Kirchhoff Integral Method for the Prediction of the Air-Pumping Noise by a Car Tyre (CFD/Kirchhoff 적분 방법을 이용한 자동차 타이어의 Air-Pumping 소음 예측)

  • Kim, Sung-Tae;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.916-919
    • /
    • 2004
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory. This paper describes an approach to predict the air-pumping noise of a car ave with CFD/Kirchhoff integral method. The type groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired. And these unsteady flow data are used as a air-pumping source in the next Cm calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time, which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of using Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of modeled car tyre and the predicted results are qualitatively compared with the experimental data.

  • PDF

Reduction of Air-pumping Noise based on a Genetic Algorithm (유전자 알고리즘을 이용한 타이어 공력소음의 저감)

  • Kim, Eui-Youl;Hwang, Sung-Wook;Kim, Byung-Hyun;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.61-73
    • /
    • 2012
  • The paper presents the novel approach to solve some problems occurred in application of the genetic algorithm to the determination of the optimal tire pattern sequence in order to reduce the tire air-pumping noise which is generated by the repeated compression and expansion of the air cavity between tire pattern and road surface. The genetic algorithm has been used to find the optimal tire pattern sequence having a low level of tire air-pumping noise using the image based air-pumping model. In the genetic algorithm used in the previous researches, there are some problems in the encoding structure and the selection of objective function. The paper proposed single encoding element with five integers, divergent objective function based on evolutionary process and the optimal evolutionary rate based on Shannon entropy to solve the problems. The results of the proposed genetic algorithm with evolutionary process are compared with those of the randomized algorithm without evolutionary process on the two-dimensional normal distribution. It is confirmed that the genetic algorithm is more effective to reduce the peak value of the predicted tire air-pumping noise and the consistency and cohesion of the obtained simulation results are also improved in terms of probability.

Numerical Method for Prediction of Air-pumping Noise by Car Tyre (자동차 타이어의 Air-Pumping소음 예측을 위한 수치적 기법)

  • Kim, Sungtae;Jeong, Wontae;Cheong, Cheolung;Lee, Soogab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.788-798
    • /
    • 2005
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a Piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory This paper describes an approach to predict the air-pumping noise of a car tyre with CFD/Kirchhoff integral method. The tyre groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired.'rhese unsteady flow data are used as a air-pumping source in the next CFD calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of simply modeled car tyre and through the predicted results, the influence of nonlinear effect on air-pumping noise propagation is investigated.

Properties of High Strength Concrete before and after Pumping in Response to Strength Level and Pumping Height (초고층 건축물에서 고강도 콘크리트의 강도 및 압송높이 변화에 따른 펌프 압송 전·후의 물성평가)

  • Jung, Sang-Woon;Lee, Hong-Kyu;Jo, Man-Ki;Kim, Gyu-Dong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.274-275
    • /
    • 2014
  • As the increase amount of high rise building, equipments for high rise building have been extensively studied. However quality problems caused as the pumping of concrete including loss of flowalility, air content and increasing of the temperature. In this study, fundamental performances of the 80 MPa concrete before·after pumping has been tested. Results showed slump flow increased after pumping temperature of concrete also increased after pumping. Results also shown air content all satisfied the target range and compressive strength of concrete increased about 20 % after pumping, All the performances satisfied the standard for 80 MPa.

  • PDF

The Heat Transfer Performance with Pumping Power for a Particle Bed Heat Exchanger (입자층(粒子層)을 이용한 열교환기(熱交換器)에서 소요동력(所要動力)에 따른 전열특성(傳熱特性)에 관(關)한 연구(硏究))

  • Yoo, J.O.;Yang, H.J.;Cho, Y.C.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.351-359
    • /
    • 1992
  • In order to improve the performance of heat exchanger, fluidized bed is often employed. The experiments are carried out in fluidized double pipe parallel flow heat exchanger in which finned tube is vertically immersed. And the heat transfer coefficients between the heated tube and fluidized bed of alumina beads(dp=0.41, 0.54, 0.65, 0.77mm) are calculated as a function of air fluidized velocity and pumping power. The effects of particle size, static bed height and pumping power on the heat transfer coefficients are investigated. And the heat transfer coefficients are compared with that of single phase forced convection heat exchanger. In particular, the heat transfer performance of each type heat exchanger is evaluated in relation to the pumping power.

  • PDF

Vacuum system design of a 10 ton/day class air liquefaction cold box for liquid air energy storage

  • Sehwan, In;Juwon, Kim;Junyoung, Park;Seong-Je, Park;Jiho, Park;Junseok, Ko;Hankil, Yeom;Hyobong, Kim;Sangyoon, Chu;Jongwoo, Kim;Yong-Ju, Hong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.65-70
    • /
    • 2022
  • A vacuum system is designed for thermal insulation of a 10 ton/day class air liquefaction cold box for liquid air energy storage. The vacuum system is composed of a turbomolecular pump, a backing pump and vacuum piping for the vacuum pumps. The turbomolecular pump is in combination with the backing pump for pumping capacity. The vacuum piping is designed with system installation conditions, such as distance from the cold box, connections to vacuum pumps and installation space. The capacity of the vacuum pump combination, namely pumping speed, is determined by analysis of the vacuum system, and pump-down time to 1×10-5 mbar is estimated. Vacuum piping conductance, system pumping speed and outgassing rate are calculated for the pump-down time with the ultimate pumping speed range of the vacuum pump combination of 1400 - 2300 l/s. Although the pump-down time gets shorter by larger capacity vacuum pumps, it mainly depends on target vacuum degree and outgassing rate in the cold box. The pump-down time is estimated as 3 - 6 hours appropriate for cold box operation for the pumping speed range. Considering the outgassing rate has uncertainty, the vacuum pump combination with pumping speed of 1900 l/s is chosen for the vacuum system, which is middle value of the pumping speed range.

Waterhammer for the In-Line Intake Pumping Station with Air Chamber (에어챔버가 설치된 인라인 취수펌프장에서 수격현상)

  • Kim, Kyung-Yup;Ahn, Cheoul-Hong;Kim, Bum-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.70-76
    • /
    • 2012
  • Recently, because people are taking a great interest in the water supply system and the related facilities are getting larger, the surge suppression is very important problem. The waterhammer occurs when the pumps are started or stoped for operation or tripped due to the power failure. As the waterhammer problems as a result of the pump power failure were very serious, these situations were carefully investigated. Accordingly, we carried out both numerical simulations and field tests to confirm the safety of Juam intake pumping station in which had the in-line pumps. In this paper, it was reviewed that the water supply system has the reliability on the pressure surge, in case the air chambers were installed at both the inlet and the oulet of the in-line pumping station. From the numerical simulations, we found that negative pressure occurred at the inlet disappeared and high pressure occurred at the outlet reduced due to the air chambers. And these results of numerical simulations verified by the field tests. The field tests carried out in case of normal start, normal stop, one and two of pumps emergency stop. By results of simulations and field tests, we are sure that Juam intake pumping station in which have the air chambers is safe for the waterhammer. In addition, we suggested the operation methods of facilities for safe maintenance of the pumping station.

A Study on the Break-down Characteristics of a Screw-type Centrifugal Pump due to Air Entrainment (공기흡입에 의한 스크류식 원심펌프의 양수불능 특성에 관한 연구)

  • Kim, You-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.58-63
    • /
    • 2003
  • The performance of turbo pump drops rapidly and it gets into break-down when the void fraction reaches above the threshold value because the impeller flow passage is choked up with air bubbles. Phenomenological understanding of break-down and pumping recovery mechanisms under air-water two-phase flow conditions are therefore important for pump designers and essential assignment for researchers. In this paper, we investigated the characteristics of break-down and pumping recovery due to entrained air occurring inside a screw-type centrifugal pump which has a wide flow passage mainly through the findings of suction and discharge pressures, rotational speed, flow rate measurements and visualization.

Physical Properties of 50MPa and 80MPa Ternary High Strength Concretes before and after Concrete Pumping

  • Lee, Bum-Sik;Kim, Seong-Deok;Jun, Myoung-Hoon;Park, Sung-Sik;Park, Su-Hee;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.451-459
    • /
    • 2012
  • At the Korea Land and Housing Corporation(LH), concretes with high design strength of 50 MPa and 80 MPa that are composed only of ordinary Portland cement, blast furnace slag, and fly ash are developed. To determine whether the developed high strength concretes have the same properties when they are produced in batch plant(B/P) condition in the ready mixed concrete plant, and as existing high strength concretes, field tests are performed and material properties are evaluated. To investigate the material properties of the high strength concretes before and after pumping, compressive strength, flowability, air content, hydration temperature, pumping and compactability are evaluated. In field tests, before and after pumping, flowability satisfied the relevant criteria. In terms of air content, while it was slightly decreased after pumping, it satisfied the requirements. Hydration temperature criteria were satisfied, and compactability was excellent as well. The study found that the developed ternary high strength concretes have the same properties as existing high strength concretes. They can also be useful for the construction of high-rise buildings, as they are economical.

Experimental Study of Check Valves in Pumping Systems with Air Entrainment

  • Lee, Thong-See;Low, Hong-Tong;Nguyen, Dinh-Tam;Rong, Wei;Neo, Avan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.140-147
    • /
    • 2008
  • An experiment setup was introduced to study dynamic behaviour of different types of check valves and the effects of air entrainment on the check valve performance under pressure transient condition. The experiment results show that the check valves with low inertia, assisted by springs or small traveling distance/angle gave better performance under pressure transient condition than check valves without these features. Air entrainment was found to affect both wave speed and reverse velocity. With the increase of the initial air void fraction in pipeline, the experiment results show that the wave speed was reduced, the reverse velocity was increased. The first peak pressure increased initially and then decreased with the increase of the initial air void fraction, the pressure surge periods were increased proportionally with air void fraction due to the greatly reduced wave speed. The study can be applied to help choosing suitable check valves for a particular pumping system.