• Title/Summary/Keyword: airborne sound

Search Result 51, Processing Time 0.026 seconds

Field Measurement of Airborne Sound Insulation for Noise Reduction about Community Facilities in an Apartment Complex (공동주택 단지 내 주민공동시설의 소음 방지를 위한 공기전달음 차단 성능 현장 조사)

  • Seong, Yo-Han;Kim, Jin-Sik;Kim, Hye-Won;Cho, Seong-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.249-250
    • /
    • 2023
  • The objective of this study is to evaluate the airborne sound insulation performance between housing units and community facilities during the construction phase. Community facilities adjacent to housing units can lead to noise problems, hence it is necessary to minimize noise transmission during the design phase. However, flanking noise transmitted through gaps of structures, windows, pipes, and other openings may result in substandard sound insulation performance falling below the design standards. Therefore, It is crucial to measure airborne sound insulation in the field during the construction phase. The measurement was conducted using the survey method for the field measurement of the airborne sound insulation in accordance with KS F ISO 10052:2021. Although the noise standards caused by community facilities in apartment complexes are not specified in current laws and regulations, desired noise level was set based on international guidelines for indoor noise. First, the level of noise generated in community facilities was estimated, and then the sound insulation performance was evaluated to determine whether the desired noise level was achieved.

  • PDF

An Experimental Study to Improve Measurement Reliability for the Airborne Sound Insulation Performance by Laboratory Test (실험실 실험을 통한 벽체 차음성능 측정의 신뢰성 향상을 위한 실험적 연구)

  • Kim, Hang;Park, Hyeon Ku;Ku, Hee Mo;Kim, Sun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.35-44
    • /
    • 2014
  • Sound pressure levels in the receiving room while testing airborne sound insulation performance are varied by the measuring points. This may increase the measurement error, then decrease the measurement reliability. With this reason the research has carried out on the method to reduce deviations of sound pressure level in the ISO type rectangular laboratory focusing on the measurement of airborne sound insulation performance. Tests were made to see the effect of sound absorption in the receiving room, loudspeaker locations, microphones locations and flanking transmission path. Consequently, it was resulted that sound absorption in the receiving room and the loudspeaker location have influence on the sound level deviations especially in the low frequency. The microphone location was very important to get measurement reliability. The effective measuring point, which the sound level difference with average sound pressure level is within 2 dB, could yield most reliable average sound pressure level. Therefore it is necessary to find the effective measuring points in the receiving room. Flanking transmission path should be sealed using sound absorber or magnet etc. to prevent from lowering the sound insulation performance.

Analysis of airborne sound insulation performance by the experiment using small size specimen (축소시편 실험을 통한 공기전달음 차단성능 분석)

  • Kim, Hang;Park, Hyeon Ku;Goo, Hee Mo;Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.83-89
    • /
    • 2014
  • The residents' demand for the comfortable life is promoting development of wall and window which has high sound insulation performance. To develop wall system, various aspects should be considered on the environment, material, construction and structure. Especially focusing on the acoustical view, the economical solution is one of the most critical point. Recently the interest on the partition wall is being increased, because it is useful for the Rahmen type apartment which is considered as an alternative to reduce floor impact sound. This study examines simplified measurement method of airborne sound insulation applied small size specimen, in order to save money to be used for the standard specimen then to promote the development process. The results showed that the simplified method could be effective for the wall system the sound insulation performance upto Rw 50 dB, and for the judgement of rank order of sound insulation performance of the similar wall type while developing.

Prediction of Interior Noise Caused by Tire Based on Sound Intensity and Acoustic Source Quantification (공기 기인 소음 분석과 음향 인텐시티법을 이용한 타이어에 의한 실내 소음 예측)

  • Shin, Kwang-Soo;Lee, Sang-Kwon;Hwang, Sung-Uk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.315-323
    • /
    • 2013
  • Tire noise is divided into a road noise(structure-borne noise) and a pattern noise(air-borne noise). Whilst the road noise is caused by the structural vibration of the components on the transfer path from tire to car body, the pattern noise is generated by the air-pumping between tire and road. In this paper, a practical method to estimate the pattern noise inside a passenger car is proposed. The method is developed based on the sound intensity and airborne source quantification. Sound intensity is used for identifying the noise sources of tire. Airborne source quantification is used for estimating the sound pressure level generated by each noise source of a tire. In order to apply the airborne source quantification to the estimation of the sound pressure, the volume velocity of each source should be obtained. It is obtained by using metrics inverse method. The proposed method is successfully applied to the evaluation of the interior noises generated by four types of tires with different pattern each other.

Investigation on the Evaluation Method of Airborne Sound Insulation in Building and Building Elements (공기음 차단성능 평가방법의 고찰)

  • 양관섭;이태강;이근희;김선우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.239-243
    • /
    • 2001
  • In evaluating sound performance of building, it is important to carry on tests and evaluations based upon residential sound performances. Korean Standards include test methods on sound performance, but don't include any code on evaluation methods. Therefore, evaluation methods from Japan or ISO have been used for evaluating sound performance in domestic so far. In this study, every regulation from ISO, JIS, ASTM, especially for airborne sound insulation against building and building element, is analyzed in order to apply to establishment of Korean Standards on a sound performance evaluation method in buildings.

  • PDF

A Study on the Airborne Noise of the Small Fishing Boats (소형어선의 소음에 관한 연구)

  • Yang, Yong-Su;Jung, Kong-Heun;Seo, Du-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.4
    • /
    • pp.412-417
    • /
    • 1992
  • In full-speed cruising, the airborne sound pressure levels are measured from 11 small fishing boats operated around Cheju Island. In these measurement, 9 measuring positions are selected in each fishing boats. The results of measurements and analyses are as follows: 1. The sound pressure levels in FRP boats are higher than those in wooden boats. 2. The highest sound pressure level is 112dB(A) at the engine room in C boat, while the lowest one is 72dB(A) at the front deck in K boat. 3. The highest sound pressure level is shown to be in the frequency band less than 500Hz. 4. The highest sound pressure level is shown to be in the frequency band less than 500Hz. 5. Through all 9 positions, the sound pressure levels are higher in B and C boat and lower in E and K boats.

  • PDF

Airborne Sound Insulation Performance of Window and Indoor Noise Level in the Balcony Expanded Apartments

  • Park, Hyeon Ku
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.61-67
    • /
    • 2015
  • Purpose: The balcony in the apartment is important space not only as a fire escape but also as a buffer for heat and sound insulation. However, with the legalization of balcony expansion for residential apartments in Korea in 2006, many households have eliminated the balcony space altogether to increase the inner space, often without sufficient consideration for the effects on the indoor environment. This study examined the sound insulation performance of exterior-facing windows in enclosed balconies and the changes in the indoor acoustic environment due to expansion to provide a basis for appropriate balcony expansion. The apartments for the field test were chosen where two balcony types can be compared, and the sound insulation performance for the eighteen balcony windows was measured. The windows installed were typical double window with thickness 16 mm or 22 mm. Measurements of the weighted standard sound pressure level difference showed a decrease of about 3 dB in sound insulation performance due to expansion. For common exterior noise levels of 70-85 dB(A), the indoor noise level can exceed 45 dB(A), the limit level regulated in Korea. However, it was found that the sound insulation performance of the window and the quality of the construction have more influence on indoor noise levels than balcony expansion itself.

Effect of Airborne Noise from Ship Machinery on Underwater Noise (선박의 장비 공기소음이 수중소음에 미치는 영향)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.569-574
    • /
    • 2011
  • In research vessels or naval ships, airborne noise from machineries such as diesel engine is the major source of underwater noise at low speed. In this paper, effect of engine noise on underwater noise is studied by considering two paths; sound radiation from hull plate and direct airborne noise transmission through hull plate. SEA (Statistical energy analysis) is used to predict hull plate vibration induced by engine noise, where SEA model consists of only two subsystems; engine room air space and hull plate. The pressure level in water is calculated from sound radiation by plate. Engine noise transmission through hull plate is obtained by assuming plane wave propagation in air-limp plate-water system. Two effects are combined and compared to the measurement, where speaker is used as a source in engine room and sound pressure levels in engine room and water are measured. The hydrophone is located 1 m away from the hull plate. It is found below 1000 Hz, prediction overestimates underwater sound pressure level by 5 to 12 dB.

A Draft Korean Standards on the Evaluation Method of Airborne Sound Insulation in Building and Building Elements (공기음 차단성능 평가방법의 KS규격화 방안)

  • 양관섭;이태강;이근희;김선우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.387-391
    • /
    • 2001
  • In evaluating sound performance of building, it is important to carry on tests and evaluations based upon residential sound performances. Korean Standards include test methods on sound performance, but don't include any code on evaluation methods. Therefore, evaluation methods from Japan or ISO have been used for evaluating sound performance in domestic so far. In this study, a draft of Korean Standards on a sound performance evaluation method in buildings is proposed.

  • PDF

Korean Standard Draft of the Laboratory Method of Measuring the Airborne Sound Insulation of a Suspended Ceiling (매단 천장의 실간 공기전달음 차단성능 측정방법의 KS규격화 방안)

  • Yang, Kwan-seop;Lee, Keun-hee;Kim, Sun-woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.393.1-393
    • /
    • 2002
  • Offices and other multipurpose buildings commonly have suspended ceilings installed over room dividing wall. But Korean Standards don't include any code on test methods and test facility of the suspended ceiling system. Therefore, test methods and test facility from ISO and ASTM have been used for evaluating sound performance in domestic so far. In this study, Korean Standards draft on test methods and test facility of suspended ceiling system and materials is proposed on the basis of ISO and ASTM.

  • PDF