• Title/Summary/Keyword: aircraft acoustic

Search Result 79, Processing Time 0.026 seconds

Numerical investigations on winglet effects on aerodynamic and aeroacoustic performance of a civil aircraft wing

  • Vaezi, Erfan;Fijani, Mohammad Javad Hamedi
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.303-330
    • /
    • 2021
  • The paper discusses the effect of the winglets on the aerodynamic and aeroacoustic performance of Boeing 737-800 aircraft by numerical approach. For this purpose, computational fluid dynamics and fluent commercial software are used to solve the compressible flow governing equations. The RANS method and the K-ω SST turbulence model are selected to simulate the subsonic flow around the wing with acceptable accuracy and low computational cost. The main variables of steady flow around the simple and blended wing in constant atmospheric conditions are computed by numerical solution of governing equations. The solution of the acoustic field has also been accomplished by the broad-band acoustic source model. The results reveal that adding a blended winglet increases the pressure difference near the wingtip,which increases the lift force. Also, the blended winglet reduces the power and magnitude of vorticities around the wingtip, which reduces the wing's drag force. The effects of winglets on aerodynamic forces lead to a 3.8% increase in flight range and a 3.6% increase in the maximum payload of the aircraft. Also, the acoustic power level variables on the surfaces and fields around the wing have been investigated integrally and locally.

Development of the prediction method of aircraft exterior noise (항공기 외부소음 예측기법의 개발)

  • Shim, In-Bo;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.78-83
    • /
    • 2000
  • Exterior noise generated by the aircraft induces a serious noise pollution near the airport. For the prediction of an exterior noise radiation of aircraft an empirical formula is employed to model the acoustic sources. It is shown that the fan/compressor noise is the most dominant part of the acoustic sources in all cases.

  • PDF

A study of the noise suppression system at the aircraft ground run-up test room (항공기 지상실험에 의한 소음 저감 방안에 관한 연구)

  • 김인수;고철수;김형근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.718-723
    • /
    • 2003
  • The number of jet aircraft is increasing. The aircraft noise making people near airports nervous have become a serious social problem. The aircraft noise can be classified into two groups; noise being generated at take-off or landing and noise form run-up test on the ground. In this paper, we consider the aircraft noise from run-up test on the pound and we suggest the noise suppression system.

  • PDF

The Study for Vibro-acoustic Noise Analysis in the Fuselage of Regional Turboprop Airplane (중형항공기 동체 소음해석 기법 연구)

  • Park, Illkyung;Kim, Sungjoon;Jung, Jinduck
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.3
    • /
    • pp.44-50
    • /
    • 2012
  • The noise reduction is important one of considerations in the process of a civil aircraft development program. External noise sources are classified into an air-born source and a structure-born source. Among these noise sources, the most affected noise source into a cabin is the air-born noise source from an engine or propeller. The external noise is transmitted into the cabin through the fuselage structure of airplane which are composed of an fuselage structure, an interior trim panel and an acoustic insulation layer between an fuselage structure and an interior trim panel. Therefore, appropriate fuselage structure and acoustic insulation layer is very important to reduce the internal noise level. In this paper, the vibro-acoustic coupled analysis of the cabin noise of the 80~90 seats regional turboprop aircraft is carried out to validate the acoustic analysis method using Direct BEM and FEM. The sound pressure level onto the fuselage skin is acquired by fan-source noise analysis using BEM, and which sound pressure is used as acoustic noise source in vibro-acoustic noise analysis for cabin noise analysis using FEM.

Interfacial Properties and Microfailure Degradation Mechanisms of Bioabsorbable Composites for Implant Materials using Micromechanical Technique and Acoustic Emission (Micromechanical시험법과 Acoustic Emission을 이용한 Implant용 생흡수성 복합재료의 계면물성과 미세파괴 분해메카니즘)

  • Kim, Dae-Sik;Park, Joung-Man;Kim, Sung-Ryong
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.263-267
    • /
    • 2001
  • The changes of interfacial properties and microfailure degradation mechanisms of bioabsorbable composites with hydrolysis were investigated using micromechanical test and acoustic emission (AE). As hydrolysis time increased, the tensile strength, the modulus and the elongation of PEA and bioactive glass fibers decreased, whereas those of chitosan fiber changed little. Interfacial shear strength (IFSS) of bioactive glass fiber/poly-L-lactide (PLLA) composite was significantly higher than that two other systems. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composite, whereas that of chitosan fiber/PLLA composite was the slowest. With increasing hydrolysis time, distribution of AE amplitude was narrow, and AE energy decreased gradually.

  • PDF

Experimental Study on Dynamic Behavior of a Titanium Specimen Using the Thermal-Acoustic Fatigue Apparatus (열음향 피로 시험 장치를 이용한 티타늄 시편의 동적 거동에 관한 실험적 연구)

  • Go, Eun-Su;Kim, Mun-Guk;Moon, Young-Sun;Kim, In-Gul;Park, Jae-Sang;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.127-134
    • /
    • 2020
  • High supersonic aircraft are exposed to high temperature environments by aerodynamic heating during supersonic flight. Thermal protection system structures such as double-panel structures are used on the skin of the fuselage and wings to prevent the transfer of high heat into the interior of an aircraft. The thin-walled double-panel skin can be exposed to acoustic loads by supersonic aircraft's high power engine noise and jet flow noise, which can cause sonic fatigue damage. Therefore, it is necessary to examine the behavior of supersonic aircraft skin structure under thermal-acoustic load and to predict fatigue life. In this paper, we designed and fabricated thermal-acoustic test equipment to simulate thermal-acoustic load. Thermal-acoustic testing of the titanium specimen under thermal-acoustic load was performed. The analytical model was verified by comparing the thermal-acoustic test results with the finite element analysis results.

Experimental and computational study of acoustic performance of the aircraft hush house (항공기 소음 저감시설의 음향 성능 관련 실험 및 예측에 관한 연구)

  • Jung, Hwan-Ik;Kim, Kwan-Ju;Park, Jin-Kyu;Kim, Sang-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.754-757
    • /
    • 2005
  • Aircraft noise is the serious problem for inhabitants near an air force base. Noise by ground test of aircraft, however, can be minimized through test room construction. In this study, environmental effects of the noise by aircraft ground test were investigated by experiments under the standard act and by performance, prediction of the Hush house, constructed for the noise reduction.

  • PDF

Using Acoustic Liner for Fan Noise Reduction in Modern Turbofan Engines

  • Azimi, Mohammadreza;Ommi, Fathollah;Alashti, Naghmeh Jamshidi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.97-101
    • /
    • 2014
  • With the increase in global air travel, aircraft noise has become a major public issue. In modern aircraft engines, only a small proportion of the air that passes through the whole engine actually goes through the core of the engine, the rest passes around it down the bypass duct. A successful method of reducing noise further, even in ultra-high bypass ratio engines, is to absorb the sound created within the engine. Acoustically absorbent material or acoustic liners have desirable acoustic attenuation properties and thus are commonly used to reduce noise in jet engines. The liners typically are placed upstream and downstream of the rotors (fans) to absorb sound before it propagates out of the inlet and exhaust ducts. Noise attenuation can be dramatically improved by increasing the area over which a noise reducing material is applied and by placing the material closer to the noise source. In this paper we will briefly discuss acoustic liner applications in modern turbofan engines.

Acoustic Noise Durability Verification for a Jet Aircraft External Store (항공기 외장 탑재장비의 음향소음 내구성 검증)

  • Lee, Jong-Hak;Lee, Yu-Kyoung;Kang, Young-Sik;Choi, Ji-Ho;Kang, Dong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.42-47
    • /
    • 2014
  • In this paper, fatigue life analysis of each structure was performed through theoretical analysis method at design stage in order to verify the success or failure of the store's acoustic noise durability according to the Method 515.5 standard of MIL-STD-810F. In addition, experimental analysis was carried out through the ground and flight test by manufacturing the measuring store, and verification of the sound durability was completed through the flight test after manufacture of the actual store. Furthermore, the commercial FEM code through the PSD calculation method applying measured SPL enables verify the durability of new store components development for the future.

  • PDF

Interfacial and Nondestructive Evaluation of Single Carbon Fiber/Epoxy Composites by Fiber Fracture Source Location using Acoustic Emission (Acoustic Emission 의 섬유파단 Source Location을 이용한 Carbon Fiber/Epoxy Composites의 계면특성 및 비파괴적 평가)

  • Kong, Jin-Woo;Kim, Jin-Won;Park, Joung-Man;Yoon, Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.116-120
    • /
    • 2001
  • Fiber fracture is one of the dominant failure phenomena to determine total mechanical properties in composites. Fiber fracture locations were measured by optical microscopic method and acoustic emission (AE) as functions of matrix toughness and surface treatment by the electrodeposition (ED), and then two methods were compared. Two AE sensors were attached on the epoxy specimen and fiber fracture signals were detected with elapsed time. The interfacial shear stress (IFSS) was measured using tensile fragmentation test and AE system. In ED-treated case, the number of the fiber fracture measured by an optical method and AE was more than that of the untreated case. The signal number measured by AE were rather smaller than the number of fragments measured by optical method, since some fiber fracture signals were lost while AE detection. However, one-to-one correspondence between the x-position location by AE and real break positions by optical method was generally established well. The fiber break source location using AE can be a valuable method to measure IFSS for semi- or nontransparent matrix composites nondestructively (NDT).

  • PDF