• 제목/요약/키워드: aluminium powder

검색결과 107건 처리시간 0.025초

Conversion of Succinate-and Adipate-Coordinated Al(III) Complexes to AlN in $N_2$ and $NH_3$ Atmospheres (질소와 암모니아 분위기에서 알루미늄(III)의 호박산 및 아디프산 착물의 AlN으로의 변환)

  • 안상경;오창우;정우식
    • Journal of the Korean Ceramic Society
    • /
    • 제33권4호
    • /
    • pp.455-463
    • /
    • 1996
  • Aluminium nitride (AlN) powder was prepared by using aluminium (III) complexes with dibasic carboxylate ligands(adipato)(hydroxo) aluminium(III) and (hydroxo)(succinato)aluminium (III) as a precursor. The AlN pow-der was obtained by calcining the complexes without mixing any carbon source under a flow of ammonia at 120$0^{\circ}C$ Contary to the conventional carbothermal reduction and nitridiation the process of decarboniza-tion of the residual carbon was not required because of the reaction of ammonia with carbon at temperature >100$0^{\circ}C$. Fine AlN powder was also prepared by calcining a mixture of an (adipato)(hydroxo)aluminium(III) complex and carbon under a flow of nitrogen at 140$0^{\circ}C$ The AlN powders prepared were ultrafine and their morphology was almost the same as that of powders of two precursors.

  • PDF

Fabrication of Aluminium Flake Powder by Ball Milling Process (볼밀링에 의한 알루미늄 프레이크 분말 제조)

  • 이동원
    • Journal of Powder Materials
    • /
    • 제3권3호
    • /
    • pp.159-166
    • /
    • 1996
  • A series of test were undertaken in order to estabilish the effect of different milling variables on dimension and quality of aluminium flake powder. Milling conditions such as initial powder size, milling container rotation speed, milling time, and ball size were varied to produce aluminium flake powder. Flake powder could then be obtained with size range from 15 $\mu$m to 40 $\mu$m with a maximum specific surface area of 5 $m^{2}$/g by controlling milling conditions. Diameter of milled powders with different milling container rotation speed and ball size were compared with that obtained from theoretical model. The best flake powder was obtained in milling condition of initial powder with average size of 19 $\mu$m, mill container rotation speed of 80 rpm, balls of 9.5 mm diameter, and milling time of 40 hours.

  • PDF

Innovative Materials and Production Techniques for Sinterforged PM Aluminium Components with Improved Performance

  • Neubing, Hans-Claus;Ichikawa, Junichi;Gradl, Johann
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.710-711
    • /
    • 2006
  • High strength PM aluminium alloys Al-Zn-Mg-Cu (7075 type) were studied by using commercially available powder blends and the sinter-forging technique for component production. Principal areas of focus include the response to PM processing, micro structural assessment and material properties of Aluminium sinter forged products. Green preforms are successfully sintered to near full density by solid-supersolidus liquid phase sintering. Sinter forging method can produce components with net shape and mechanical characteristics of the material have improved greatly. Properties of this new PM Al-alloy were found to be reproducible in an industrial production environment.

  • PDF

P/M Aluminium Automobile Parts in Sumitomo Electric Ind. Ltd.

  • Akechi, Kiyoaki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 1997년도 춘계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.5-5
    • /
    • 1997
  • Rapidly-solidified P/M aluminium alloys for automobile and home appliance industries were developed. Rapidly-solidification made it possible to refine microstructures and to expand the range of alloy composition. For example, Al-Si alloys containing transition metal have lower thermal expansion coefficient, more excellent wear resistance, higher strength, and better machinability than those of conventional aluminium alloys. Therefore, in Japan, the technologies on powder-extrusion and powder-forging of aluminium alloy powders are developed for fifteen years, and applied to several parts, such as cylinder liners of motor cycle engines, rotors and vanes of compressors for car air conditioner, oil pump rotor for racing car, and so on. In this presentation, applications for automobile are mentioned. In particular, cylinder liners made of particle-dispersed composites with fine alumina and graphite are in detail described.

  • PDF

The Properties of Aluminium Alloy Powder for Aluminothermy Process with $Mn_3O_4$ Waste Dust ($Mn_3O_4$ 분진의 Al 테르밋 반응용 Al 합금분말의 특성)

  • Kim, Youn-Che;Song, Youn-Jun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • 제30권1호
    • /
    • pp.71-77
    • /
    • 2013
  • Aluminium powder as reductant in aluminothermy process needs a fine particle size under 200 mesh, but it is not easy economically to make that because of its high ductility and powder production cost. In order to reduce the production cost of fine aluminum powder as reductant of $Mn_3O_4$ waste dust, therefore, the properties of aluminium alloy powder were investigated. Aluminium alloy ingot containing large amount of manganese can be crushed easily because of its intermetallic compounds having brittle properties. The manganese is also main element in ferro-manganese. We can obtain economically Al-15%Mn alloy powder by mechanical comminution process. And the result of thermite reaction using Al-15% Mn alloy powder instead of pure Al powder showed the fact that can be obtained the ferro-manganese which have a high purity in case of using pure aluminium powder as reductant. The recovery of manganese from $Mn_3O_4$ waste dust with Al-15%Mn alloy powder was higher level of about 70% than about 65% in case of using aluminium powder, that is due to lower spatter loss.

Warm Compression of Al Alloy PM Blends

  • Jiang, Z.;Falticeanu, C.L.;Chang, I.T.H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.193-194
    • /
    • 2006
  • With the onging trend of weight saving in automobiles, the application of light alloys is increasing. Recently, aluminum powder metallurgy has been the subject of renewed attention due to the combination of lightweight of aluminium and the efficient material utilisation of the powder metallurgical process, which offer attractive benefits to potential end-users. This study is to explore the use of warm compaction process to aluminium powder metallurgy. This paper presents a detailed study of the effect of warm compression and sintering conditions on the resultant microstructures and mechanical properties of Al-Cu-Mg-Si PM blend.

  • PDF

Sintering Behaviour of Al-Cu-Mg-Si Blends

  • Falticeanu, C.L;Chang, I.T.H;Kim, J.S.;Cook, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.278-279
    • /
    • 2006
  • The increasing demand for automotive industries to reduce the weight of the vehicles has led to a growing usage of Al alloy powder metallurgy (P/M) parts. In order to control the sintered microstructure and mechanical properties of the aluminium alloy powder metallurgical (P/M) parts, it is essential to establish a fundamental understanding of the microstructural development during the sintering process. This paper presents a detailed study of the effect of temperature and initial starting materials on the evolution of microstructure during the sintering of Al-Cu-Mg-Si blends for PM.

  • PDF

Softening-hardening Mechanisms in the Direct Hot-extrusion of Aluminium Compacts

  • Zubizarreta, C.;Arribas, I.;Gimenez, S.;Iturriza, I.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.718-719
    • /
    • 2006
  • Two different commercial aluminium powder grades have been densified by direct hot extrusion. The extrusion temperature was $425^{\circ}C$, with an extrusion ratio of 1:16. Prior to extrusion, some green compacts were pre-sintered ($500^{\circ}C$). The evolution of the extrusion load during the process and the hardness of the final products have been investigated. Additionally, microstructural characterization by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Backscattered Diffraction (EBSD) was carried out. The obtained results evidence grain refinement. Additionally, inter-metallic precipitation, dynamic recovery and geometric dynamic recrystallization take place depending on some process variables, powder composition, heat treatment, strain $\ldots$

  • PDF

The Development of Aluminium Alloy Piston by Powder Forging Method (분말단조법에 의한 알루미늄 합금 피스톤 개발)

  • Kang, Dae-Yong;Park, Jong-Ok;Kim, Kil-Jun;Kim, Young-Ho;Cho, Jin-Rae;Lee, Jong-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제17권8호
    • /
    • pp.87-93
    • /
    • 2000
  • Powder Forging technology is being developed rapidly because of its economic merits and the possibility of lightening parts by replacing steel parts with aluminum ones especially in automotive parts manufacturing. Recently Powder Forging process is widely used for manufacturing primary mechanical parts as a combined technology of P/M and precision hot forging. This paper describes the process conditions for the powder forging of Aluminium alloy piston. For example powder alloy design preform design by FEM simulation cold of compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered products and final forged piston ones are investigated with tensile strength hardness ductility and so on. Eventually its results prove the improve mechanical properties of the piston produced by powder forging.

  • PDF

A comparative study of grinding mill type on aluminium powders with carbon nano tube: traditional ball mill and planetary ball mill

  • Choe, Hui-Gyu;Choe, Gyeong-Pil;Bae, Dae-Hyeong;Lee, Seung-Baek;Lee, Ung;Kim, Seong-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.27.2-27.2
    • /
    • 2009
  • Grinding characteristics for aluminium and carbon nanotubes (CNTs) powder during traditional and planetary ball milling investigated from the viewpoint of particle behaviour with the aimat developing CNT-dispersed samples ground based on powder metallurgy routes.In this work, a comparison between the pure aluminium and CNT input aluminium grinding was carried out to determine grinding time effect on size reduction.We observed that the use of the curly small-diameter multi-walled carbon nanotubes (MWCNTs) attributed to the beneficial role of the MWCNTs as grinding aids. It is suggested that careful choices of the sizes of CNTs and Al powders would allow fine-grinding of composite particles with uniformly distributed CNT reinforcements thereby ensuring improved properties of the final composites produced by low-temperature compacting.

  • PDF