• Title/Summary/Keyword: aluminum alloy

Search Result 1,579, Processing Time 0.032 seconds

Research on the Mechanical Properties of Some New Aluminum Alloy Composite Structures in Construction Engineering

  • Mengting Fan;Xuan Wang
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.72-78
    • /
    • 2024
  • The lightweight and high strength characteristics of aluminum alloy materials make them have promising prospects in the field of construction engineering. This paper primarily focuses on aluminum alloy materials. Aluminum alloy was combined with concrete, wood and carbon fiber reinforced plastic (CFRP) cloth to create a composite column. The axial compression test was then conducted to understand the mechanical properties of different composite structures. It was found that the pure aluminum tube exhibited poor performance in the axial compression test, with an ultimate load of only 302.56 kN. However, the performance of the various composite columns showed varying degrees of improvement. With the increase of the load, the displacement and strain of each specimen rapidly increased, and after reaching the ultimate load, both load and strain gradually decreased. In comparison, the aluminum alloy-concrete composite column performed better than the aluminum alloy-wood composite column, while the aluminum alloy-wood-CFRP cloth composite column demonstrated superior performance. These results highlight excellent performance potential for aluminum alloy-wood-CFRP composite columns in practical applications.

THE APPLICATION OF ALUMINUM SHEET FOR THE PROTECTIVE HEAT SHIELD (ALLMINUM PROTECTIVE HEAT SHIELD 적용연구)

  • 이중윤;이호기;이경남
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.166-173
    • /
    • 1996
  • There are kinds of materials for protective heat shield, i.e.Zn-coated steel, AI-coated steel and aluminum alloy sheets. This study compare formability, corrosion resistance, heat protectability, weight, and cost of these materials for heat protective shield. Generally aluminum alloy sheets are less formable than steel sheets, but A1100 alloy sheet shows almost same press quality of steel parts, using the press dies which producing steel parts. The heat shields using aluminum alloy sheet and steel sheet show almost same heat protectibility. It is the conclusion that Zn-coated merit, and AI-coated steel sheet and aluminum alloy sheet can be used to protect functional corrosion in severely corrosive market area. The material cost of AI-coated steel sheet and aluminum alloy sheet for a mid-size car is almost same, so aluminum alloy sheet is more recommendable in the point of weight reduction of vehicle.

  • PDF

Study on the Yield Locus of Aluminum Alloy Sheet Using Biaxial Cruciform Specimens (2축 십자형 시편을 이용한 알루미늄 합금 판재의 항복곡면에 대한 연구)

  • Shin, H.D.;Park, J.G.;Park, C.D.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.416-421
    • /
    • 2009
  • The applications of the aluminum alloy sheets to the auto-body panels are dramatically increasing for weight reduction of the automobiles. However, low formability of the aluminum alloy sheet compared to the steel sheet can be obstacles in tool manufacturing processes. Therefore, many of yield criteria for the anisotropic materials such as the aluminum alloy sheet have been observed. In this study, the biaxial tensile test and FLD test for the aluminum alloy sheet are performed. The results are compared with Hill's 1948 and Hill's 1990 models by means of theoretical predictions. Finite element analysis was also performed using the proposed method for the real panel.

The Statistical Evaluation of Strength in Fiber Reinforced Metal Laminates (섬유강화금속적층재의 강도에 대한 통계적 평가)

  • 손세원;장정원;이혜영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.815-819
    • /
    • 1994
  • In this paper, the tensile strength in aluminum alloy 5052, Kevlar 49-fiber reinforced aluminum alloy laminates, and Glass-fiber reinforced aluminum alloy laminates, is statistically evaluated. Prepregs manufactured in Han Kuk Fiber is used and FRMLs is cured by Hot-Press. Standard statistical are used to determine the distribution function which best fits FRMLs strength data. The normal,lpg-normal, and two-parameter Weibull distrbuttion are evaluated using the Kolmogoorov-Smirnov goodness-of-fit test. At the 5% significance level, none of these distribution is rejected. The strength of Aluminum alloy 5052 is best fits to a normal distribution. However, the strength of Kevlar 49-fiber reinforced aluminum alloy laminates and Glass-fiber reinforced aluminum alloy laminates is best fits to a two-parameter Weibull distribution.

  • PDF

Study on the Yield Locus of Aluminum alloy sheet Using Biaxial Cruciform Specimens (2축 십자형 시편을 이용한 알루미늄 합금 판재의 항복곡면에 대한 연구)

  • Shin, H.D.;Park, J.G.;Park, C.D.;Ro, H.C.;Youn, K.T.;Lim, H.T.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.164-167
    • /
    • 2009
  • The applications of the aluminum alloy sheets to the auto-body panels are dramatically increasing for weight reduction of the automobiles. However, low formability of the aluminum alloy sheet compare to the steel sheet can be obstacles in tool manufacturing process. Therefore, much of yield criteria for the anisotropic material such as the aluminum alloy sheet have been observed. In this study, the biaxial tensile test and FLD test for the aluminum alloy sheet are performed. The results are compared with Hill's 1948 and Hill's 1990 model by means of theoretical predictions. Finite element analysis also performed using the proposed method for the real panel.

  • PDF

Corrosion behavior of oxide layer formed on surface of high silicon aluminum alloy by PEO process (고규소 알루미늄 합금의 표면에 PEO 공정에 의하여 형성된 산화물 층의 부식 거동)

  • Deok-Yong Park
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.250-258
    • /
    • 2023
  • Ceramic oxide layer was formed on the surface of high silicon aluminum alloy by using PEO (plasma electrolytic oxidation) process. The microstructure of the oxide layer was analyzed using scanning electron microscopy (SEM) and x-ray diffraction patterns (XRD). The high silicon aluminum alloy prior to PEO process consists of Al, Si and Al2Cu phases in XRD analysis, whereas Al2Cu phase selectively disappeared after PEO treatment. Considerable decrease of relative intensity in most of peaks in XRD results of the high silicon aluminum alloy treated by PEO process was observed. It may be attributed to the formation of amorphous phases after PEO treatment. The corrosion behavior of the high silicon aluminum alloy treated by PEO process was investigated using electrochemical impedance spectroscopy (EIS) and other electrochemical techniques (i.e., open circuit potential and polarization curve). Electroanalytical studies indicated that the high silicon aluminum alloy treated by PEO process shows greater corrosion resistance than that untreated by PEO process.

Nanosecond Laser Cleaning of Aluminum Alloy Oxide Film

  • Hang Dong;Yahui Li;Shanman Lu;Wei Zhang;Guangyong Jin
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.714-720
    • /
    • 2023
  • Laser cleaning has the advantages of environmental protection, precision, and high efficiency, and has good prospects for application in removing oxide films on the surface of aluminum alloy. This paper discusses the cleaning threshold and cleaning mechanism of aluminum alloy surface oxide film. A nanosecond pulsed laser was used to remove a 5-㎛-thick oxide film from the surface of 7A04 aluminum alloy, and the target surface temperature and cleaning depth were simulated. The effects of different laser energy densities on the surface morphology of the aluminum alloy were analyzed, and the plasma motion process was recorded using a high-speed camera. The temperature measurement results of the experiment are close to the simulation results. The results show that the laser cleaning of aluminum alloy oxide film is mainly based on the vaporization mechanism and the shock wave generated by the explosion.

The Effect of Hot Isostatic Pressing on Mechanical Properties of Cast Aluminum Alloy (주조된 AI 합금의 기계적 성질에 미치는 HIP의 영향)

  • Kim, Gi-Tae;Yang, Hun-Cheol;Choe, Jae-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.461-470
    • /
    • 2002
  • The present paper investigates the effect of hot isostatic pressing (HIPing) on mechanical properties, e.g., tensile strength, ductility and impact absorption energy of sand and die casted aluminum alloys. After HIPing at various temperatures and pressure conditions, uniaxial tensile test and Izod impact test of the samples were carried out. The experimental results showed improvements in uniaxial tensile strength, elongation and Izod impact toughness of sand casted aluminum alloy, while deterioration of a tensile strength fur die casted aluminum alloy. The effect of HIPing for microstructure of the cast aluminum alloy was also investigated.

A Study on the Fatigue Behavior of ARALL and Manufacturing of ARALL Materials (ARALL재의 개발과 이의 파괴거동에 관한 연구)

  • 손세원;이두성;장정원;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.908-912
    • /
    • 1996
  • FRMLs consist of thin sheets of high strength metal, which are laminated using a structural adhesive and high strength fibers. ARALL(Aramid-fiber Reinforced Aluminum alloy Laminates) of FRMLs is a new class of hybrid material. HERALL(Heracron Reinforced Aluminum Laminate) i.e. domestic ARALL is made of homemade aramid fibers, adhesives and adhesive technique. Domestic aramid fiber is Heracron manufactured by KOLON and domestic adhesive is epoxy resin manufactured by Han Kuk Fiber. In this study, Fatigue crack propagation behavior was examined in a 2024-T3 aluminum alloy/aramid-fiber epoxy 3/2 laminated composites, HERALL and ARAL $L^{ⓡ}$-2 LAMINATE comparing with 2024-T3 aluminum alloy. The extrinsic toughening mechanisms in HERALL and ARALL were examined, the crack bridging behavior of fibers was analyzed by new algorithm, which measures crack bridging stress, and the crack bridging zone length was measured.

  • PDF

Durability Analysis of Aluminum Alloy Brake Pedal Manufactured by Die Casting (다이캐스팅용 알루미늄 합금 브레이크 페달의 내구성 해석)

  • Cho, Seunghyun;Kang, Seul-Ki;Kim, Hangoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.198-203
    • /
    • 2016
  • Computer-Aided Engineering (CAE) durability analysis and experiments of an aluminum alloy brake pedal were carried out for the car lighter by die casting method. In the CAE analysis, KS standards and criteria of the Volvo Car Corporation were applied, and in the experiment, KS standards were applied. The CAE analysis results show that aluminum alloy brake pedals are stronger than the conventional steel brakes pedals because the yield strength of the aluminum alloy increased by almost 97% over that of steel. Further, the structures of the cylinder and the frame were reinforced with increasing thickness of flame and were changed to suit the die-casting process. Through a durability test based on the KS standard, the strength of a prototype of the aluminum alloy brake pedal was confirmed to be sufficient.