• Title/Summary/Keyword: ammonia odor

Search Result 186, Processing Time 0.026 seconds

Aqeous Neutralizer as Reactive Solvents for Odorous Ammonia Removal

  • Park, Young-G.
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.119-124
    • /
    • 2008
  • Ammonia is an inorganic compound that may cause severe odor problem. In this study the effectiveness of applying natural neutralizer to destroy and remove the odor-causing compound from gas streams was studied. Experimental result evaluated with a bench-scale apparatus via the neutralization of gas phase. This indicates that the natural neutralization depends on the gas concentration, gas residence time, temperature and pH. Removal efficiency of ammonia from gas stream was achieved by 95% using theconvection in the packed bed. This study proved the chemical neutralization technology was effective for controlling inorganic odor-causing compound.

Release of Ammonia Odor from AAFA (Ammonia Adsorbed Fly Ash) by Installation of NOx Reduction System

  • Kim, Jae-kwan;Park, Seok-un;Lee, Hyun-dong;Chi, Jun-wha
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.437-445
    • /
    • 2016
  • This paper discussed the effect of ammonia concentration adsorbed on fly ash for the ammonia emission as AAFA (Ammonia Adsorbed Fly Ash) produced from coal fired plants due to operation of NOx reduction technologies was landfilled with distilled or sea water at closed and open systems, respectively. Ammonia bisulfate and sulfates adsorbed on fly ash is highly water soluble. The pH of ammonium bisulfate and sulfate solution had significant effect on ammonia odor emission. The effect of temperature on ammonia odor emission from mixture was less than pH, the rate of ammonia emission increased with increased temperature when the pH conditions were kept at constant. Since AAFA increases the pH of solution substantially, $NH_3$ in the ash can release the ammonia order unless it is present at low concentration. $NH_4{^+}$ ion is unstable in fly ash and water mixtures of high pH at open system, which is changed to nitrite or nitrate and then released as ammonia gas. The proper conditions for < 20 ppm of ammonia concentration released from the AAFAs landfilled in ash pond were explored using an open system with sea water. It was therefore proposed that optimal operation to collect AAFA of less than 168 ppm ammonia at the electrostatic precipitator were controlled to ammonia slip with less than 5 ppm at SCR/SNCR installations, and, ammonia odor released from mixture of fly ash of 168 ppm ammonia with sea water under open system has about 20 ppm.

Development of an Odor Abatement System for Swine Manure Treatment Facilities

  • Lee, S.H.;Yun, N.K.;Kim, G.W.;Yum, S.H.;Cho, Y.H.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • This study was conducted to solve the problem of public grievance owing to odor of a pig farm. Odor emissions from pig production systems mainly originate from liquid manure storage and solid manure fermentation. The low-cost odor abatement system (OAS) for application at liquid manure storage tank and solid manure fermentation facilities was developed in this study. The OAS adapted odor removing principles of a biofilter and biotrickling filter. The OAS is very simplified in structure. The appearance of the OAS had a form of cylindrical or cubical shape. The system performance was monitored for about one year after stabilization. A 7 seconds empty bed contact time for the OAS was adapted to achieve the odor reduction levels. The commercial type of OAS was constructed with media comprised of wood chips. Moisture content always remained above 50% wet basis. Average ammonia removal efficiency for the developed design was 89% at the liquid manure storage tank. Also, the removal efficiency at a solid manure fermentation facility was 86% on ammonia.

  • PDF

Odor generation pattern of swine manure according to the processing form of feed

  • Won Choi;Wooje Lee;Kiyoun Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.219-231
    • /
    • 2024
  • Feed has a great influence on the composition of swine manure, which is the principal cause of odor. Therefore, the purpose of this study is to simply change the shape of pig feed and control calories to find a suitable feed form for reducing the smell of swine manure. The experiment was conducted on 15 pigs from July to August 2021, and a total of three measurements were done. Three types of feed were evaluated in this study. The analysis items related to odor of swine manure are complex odor, ammonia, sulfur-based odors, and volatile organic compounds (VOCs). In the case of complex odor, dilution multiples tended to decrease over time, except for type A feed. The concentration of ammonia in all types of feed decreased over time. Most sulfur-based odorous substances except hydrogen sulfide at the first measurement were not detected. Representatively, Decane, 2,6-Dimethylnonane, and 1-Methyl-3-propylcycolhexane were detected in VOCs generated from swine manure. The major odorous substansces in swine manure have changed from ammonia and sulfur compounds to VOCs. In order to reduce the odor caused by swine manure, it is ad-vantageous to use low-calorie feed consisting of pellet-type.

Development of Biofilter System for Reducing Odor from Livestock Facilities - Odor Reducing Characteristics of Bed Materials - (돈사악취저감을 위한 바이오필터 시스템 개발 - 충전재의 악취제거 특성 -)

  • 한원석;장동일;방승훈;이승주
    • Journal of Biosystems Engineering
    • /
    • v.29 no.2
    • /
    • pp.151-158
    • /
    • 2004
  • This research was conducted to study the offensive odor adhesion efficiency of filter bed materials using the experimental column that was designed and constructed in this work. The offensive odor adhesion experiment was conducted using mixture of high physical adhesion efficiency material, and the fixity of deodorization microorganism of selected filter bed material was tested using ammonia exclude microorganism A4-2 and sulfur oxidation microorganism S5-5.2 those were cultured at the Agricultural Chemical Department of Chungnam National University, and deodorization efficiency of selected filter bed material mixture was tested. Followings are summary of these tests results. 1) Amount of elimination of the offensive odor gas ammonia and hydrogen sulfide per unit volume were 0.054 and 0.016 $\ell$/㎤ in rice hull, 0.01 and 0.004 $\ell$/㎤ in rice straw, 0.158 and 0.01 $\ell$/㎤ in coconut, 0.014 and 0.02 $\ell$/㎤ in perlite, 0.004 and 0.003 $\ell$/㎤ in high road ball, and 0.112 and 0.015 $\ell$/㎤ chaff of pine, respectively. 2) Amount of elimination of offensive odor gas of ammonia and hydrogen sulfide per unit vloume were 0.079 and 0.016 $\ell$/㎤ in mixture 1, 0.045 and 0.014 $\ell$/㎤ in mixture 2, 0.123 and 0.017 $\ell$/㎤ in mixture 3, 0.055 and 0.016 $\ell$/㎤ in mixture 4, 0.031 and 0.015 $\ell$/㎤ in mixture 5, and 0.111 and 0.020 $\ell$/㎤ in mixture 6, respectively. 3) The offensive odor elimination microoraganism inoculated to the mixture of chaff of pine (70%) and pert (30%) showed the elimination efficiency of 99.06% and 96.61% against the ammonia and hydrongen sulfide, respectively, during 24 hours period.

The Concentrations of Sulfur Compounds and Sensation of Odor in the Residential Area Around Banwol-Sihwa Industrial Complex (반월.시화공단 주변 주거지역의 악취현황 및 황화합물의 체감도)

  • Kim, Jong-Bo;Jeong, Sang-Jin;Song, Il-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.147-157
    • /
    • 2007
  • This study was carried out to investigate the characteristics of fourteen odor compounds from a total of 10 sampling sites in residential areas around Banwol-Sihwa industrial complex. The measurement data are analyzed and compared with sensation of odor unit. Only a hydrogen sulfide out of four sulfur compounds was quantified above the detection limit (0.06 ppb) in the residential area around Banwol industrial complex with leather companies and a sewage treatment plant. The concentrations of VOCs were higher than those measured from a big city, and styrene showed the relatively high concentration from all sampling sites ($2.1{\sim}37.8\;ppb$). In the case of carbonyl compounds, acetaldehyde was found most frequently with the mean of 3.97 ppb, and its concentration difference was not significant between Banwol and Sihwa industrial complex. Of the nitrogen compounds, ammonia was measured at the relatively high concentration from all the sampling sites ($12{\sim}707\;ppb$), and a trimethylamine was found at the odor threshold level (0.1 ppb). The concentrations of styrene and ammonia showed relatively seasonal variation, the concentration of styrene in summer was five times higher than that in autumn, the concentration of ammonia in autumn was two times higher than that in summer. However other odorous compounds did not show such strong seasonal variation. Odor-concentration relationship between odor unit and $H_{2}S$ concentrations from industrial sources was examined and used as odor sensation evaluation, and thus the neighbourhood odor complaints maybe caused during the four seasons from the results.

Performance of a Biofilter for Odor Removal during Manure Composting

  • Park, K.J.;Hong, J.H.;Choi, M.H.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • Odor generated during composting of livestock manure is mainly due to ammonia emission. Biofiltration is a desirable method to control composting odor. This study was conducted to analyze the efficiency of using fresh compost as a biofilter. A mixture of cattle manure and recycled compost was composted in a bin equipped with a suction-type blower. The exhaust gas was filtered through the fresh compost. Residence time was controlled by the flow rate of exhaust gas and the depth of filtering materials. At the aeration rate of 30 L/min(experiment I), ammonia reduction rate varied from 100% to -15% for biofilter A(residence time 56.5 s) and almost 100% for biofilter B(residence time 113 s). At the aeration rate of 30 L/min, the cumulative ammonia reduction rate was 80.5% for biofilter A and 99.9% for biofilter B. At the aeration rate of 50 L/min(experiment II), the lowest reduction rate showed a negative value of -350% on the 8th and 9th day for biofilter A(residence time 33.9 5), and 50% on the loth day for biofilter B(residence time 67.8s). At the aeration rate of 50 L/min, the cumulative ammonia reduction rate was 82.5% fur biofilter A and 97.4% for biofilter B. Filtering efficiency was influenced by residence time. The moisture content(MC) and total nitrogen(T-N) of the filtering material were increased by absorbing moisture and ammonia included in the exhaust gas, while pH was decreased and total carbon(T-C) remained unchanged during the filtering operation.

  • PDF

A Field Survey on the Odor Concentration in Piggery by the Change of the Season (돈사 내에서 계절별 악취 발생 농도 조사 연구)

  • Kam, D.H.;Jeong, J.W.;Choi, H.C.;Song, J.I.;Hong, J.T.;Lee, D.W.;Yoo, Y.H.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.187-194
    • /
    • 2007
  • Six pig farms were surveyed to measure the odor concentrations and characteristics of ammonia and sulfide corollary compounds in piggery. They were depended on the scale of piggery, weather conditions such as temperature, humidity, wind speed and direction, scales and types of pig breeding, and manure treatment methods. The highest ammonia concentrations in piggery were measured during the winter, since the tight sealed insulation in piggery made less amount of generated ammonia discharged from piggery. The objective of this study was to measure concentrations of odor in the piggery by season and growing, and to measure concentrations of odor at boundary area. So, we investigated the raising managements, manure managements, and methods of reducing odor according to farm scale. We found that concentration of ammonia gas in the swine fattening piggery in winter was the highest. This result is consistent with the lower ventilation rate to maintain Indoor temperature. In this result, there was no connection between farm scale and ventilating system. Concentration of ammonia gas was 1.64 ppm at one boundary area in the middle scale. $H_2S$, $CH_3SH$, $(CH_3)_2S$, and $(CH_3)_2S_2$ were below the standard of protection odor policy.

  • PDF

Ammonia neutralization and removal using electrolyzed-acidic water (전해산성수를 이용한 암모니아 중화와 제거)

  • Choi, Weon-Kyung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.185-190
    • /
    • 2021
  • An electrolyzed-acidic water treatment was investigated as a methods for removing ammonia, which is a cause of odor in life environment. The prepared electrolyzed-acidic water was found out as stable solvent capable of neutralizing weak alkaline ammonia by measuring changes in pH and ORP. It was found out that ammonia was removed from the mixture solution of electrolyzed-acidic water and ammonia water by the UV-vis absorbance analysis and electrochemical open-circuit potential measurement. The neutralized ammonia by electrolyzed-acidic water and effectively removed odor was measured using ammonia gas detecter. Consequently, we recommend the electrolyzed-acidic water can effectively and safely remove ammonia in eco-friendly.

Study on Odor From Gestating Sow Barns and Boundary Area (양돈장의 임신돈사와 부지경계에서 발생하는 악취 연구)

  • Jeong, J.W.;Park, K.H.;Heu, M.Y.;Choi, D.Y.;Lee, M.J.;Gang, H.S.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.2
    • /
    • pp.107-114
    • /
    • 2009
  • Civil appeals on odor from swine barn have been increasing. This study was conducted to compile basic data of odor from swine barns as civil appeals on odor have been increasing. Odor was monitored from two gestating sow barns and the boundary of those barns in Suwon and Hwaseong city from June to November, 2008. Mean ammonia concentration measured at the boundary of A piggery in Suwon city was 0.9 ppm with occasional breaks of permissible limit (1.0 ppm). Mean concentrations of hydrogen sulfide and methyl mercaptan were 0.37 ppb and 0.01 ppb, which were lower than permissible limits of 20 ppb and 2 ppb, respectively. Mean ammonia concentration was 3.22 ppm and was maintained under 5.0 ppb. Ammonia concentration had increased since November when the barns were closed. Hydrogen sulfide and methyl mercaptan were lower than the permissible limits. Mean ammonia concentration measured at the boundary of B piggery in Hwaseong city was 16.3 ppm and steep increase of concentration was monitored after October when the barn was sealed up. Hydrogen sulfide and methyl mercaptan were 26.66 ppb and 7.45 ppb, respectively. In appropriate ventilation and raising environment would cause high ammonia concentration in swine barns. Emitted ammonia from barns and composting facilities were mixed, which would cause higher ammonia concentration on the boundary of barns. Hence improvement of raising environment, rapid manure treatment, and correct use of microbial preparation would be needed.

  • PDF