• Title/Summary/Keyword: annealing

Search Result 5,917, Processing Time 0.038 seconds

Reverse annealing of $P^+/B^+$ ion shower doped poly-Si

  • Jin, Beop-Jong;Hong, Won-Eui;Ro, Jae-Sang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.752-755
    • /
    • 2006
  • Reverse annealing was observed in $P^+/B^+$ ion shower doped poly-Si upon activation annealing. Phosphorous or boron was implanted by ion shower doping using a source gas mixture of $PH_3/H_2$ or $B_2H_6/H_2$. Activation annealing was conducted using a tube furnace in the temperature ranges from $350^{\circ}C$ to $650^{\circ}C$. Hall measurement revealed that reverse annealing begins at different annealing temperatures for poly-Si implanted with P and B, respectively. It was observed that reverse annealing starts at $550^{\circ}C$$ in $P^+$ ion shower doped poly-Si, while at $350^{\circ}C$ in the case of B-doping.

  • PDF

BAF 소둔의 저온점 변화에 관한 연구

  • 김순경;이승수;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.327-331
    • /
    • 1997
  • As demand for various kinds and small lot products has been increasing, batch annealing has been appreciated for its small restiction for the opteration. The cold spot of the coil is very important in the BAF(Batch annealing furnace) annealing process. Because of the annealing cycle time in the BAF, annealing was decided on the cold spot of the coil. So, we tested the effect,variation of cold spot, for hydrogen contents of atmospheric gas at the annealing furnace. As a result of several investigations. We confirmed the following characteristics ; after the heating and soaking,the cold spot of coil moved to 1/3 of coil thickness in the NHx atmospheric gas, but the mid point of the coil thickness is the cold spot in the Ax or .H/sub2. atmospheric gas. Therefore, the use of hydrogen instead of nitrogen as the protective gas,combined with high convection in batch annealing furnaces, has shown that considerable increases in furnace output and material quality are attainable. Owing to the low density, high diffusion and reducing character of hydrogen, a better transfer resulting in uniform material temperatures and improved coil surfaces can be achieved.

Structural Optimization By Adaptive Simulated Annealing's Cooling Schedule Change (어댑티브 시뮬레이티드 어넬링의 냉각스케줄에 따른 구조최적설계)

  • Jung, Suk-Hoon;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1436-1441
    • /
    • 2003
  • Recently, simulated annealing algorithms have widely been applied to many structural optimization problems. In this paper, simulated annealing, boltzmann annealing, fast annealing and adaptive simulated annealing are applied to optimization of truss structures for improvement quality of objective function and number of function evaluation. These algorithms are classified by cooling schedule. The authors have changed parameters of ASA's cooling schedule and the influence of cooling schedule parameters on structural optimization obtained is discussed. In addition, cooling schedule of BA and ASA mixed is applied to 10 bar-truss structure.

  • PDF

Effect of Productivity on the Hydrogen Content of Atmospheric gas in the BAF (BAF에서 분위기 가스의 수소 성분이 생산성에 미치는 영향)

  • 김순경;전언찬;김문경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.560-564
    • /
    • 1996
  • In recently, annealing process of cold rolled sheet tend to change to continuous annealing process for improving qualify, saving yield. In the meantime as demand for various kind and small lot of products has been increasing, batch annealing has been appreciated for its small restriction for the operation. So, we tested on the effect for a hydrogen contents of atmospheric gas at annealing furnace. As a result of several investigation. We confirmed for the following characteristics ; improved productivity, uniform heating, improved surface quality, saving energy. Therefore, the use of hydrogen instead of nitrogen as the protective gas, combined with high convection in batch annealing furnaces, has shown that considerable increases in furnace output and material quality are attainable. Owing to the low density, high diffusion and reducing character of hydrogen, a better transfer resulting in uniform material temperatures and improved coil surfaces can be achieved.

  • PDF

Mechanical Properties of Ultrafine Grained 5052 Al Alloy Produced by Cryogenic Rolling Process (극저온 압연으로 제조된 5052 Al 합금의 기계적 성질)

  • Nam W. J
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.704-709
    • /
    • 2004
  • The effect of annealing temperature on microstructures and mechanical properties of the 5052 Al sheets rolled 88% reduction at cryogenic temperature was investigated for the annealing temperature of 150 ~ $300^{\circ}C$, in comparison with those rolled at room temperature. The presence of equiaxed grains, whose size is about 200nm in a diameter, was observed in the alloy deformed 88% and annealed $200^{\circ}C$ for an hour. When compared with the deformation at room temperature, the deformation at cryogenic temperature showed the higher strengths and equivalent elongation after annealing at the annealing temperature below $200^{\circ}C$. However, for annealing above $250^{\circ}C$ materials deformed at cryogenic temperature showed the lower strength than those deformed at room temperature. This behavior might be attributed to the higher rate of recrystallization and growth in materials deformed at cryogenic temperature during annealing, due to the lager density of dislocations accumulated during the deformation.

Frequency Characteristics of Li Doped ZnO Thin Film Resonator by Annealing Temperatures (열처리 온도에 따른 Li 도펀트 ZnO 박막형 공진기의 주파수 특성)

  • Kim, Eung-Kwon;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.527-531
    • /
    • 2006
  • In order to study the influence of post-annealing treatment on the frequency characteristics of the Li doped ZnO(Li:ZnO) FBAR(Film Bulk Acoustic Resonator) device, we investigated the material and electrical properties of Li:ZnO films in the annealing temperature range from 300 to $500^{\circ}C$. In our samples, as annealing temperature was increased, Li:ZnO films showed the improvement of high c-axis orientation and resistance value with relieved stress and low surface roughness. In addition to, the return loss in the frequency property of fabricated FBAR was improved by annealing treatment from 24.9 to 29.8dB. From experimental results, the optimum post-annealing temperature for FBAR is $500^{\circ}C$ and it can obtain excellent Li:ZnO FBAR performance with stronger c-axis orientation, smoother surface, relieved stress, and lower loss factor.

The Critical Characteristics Attributed to the Slow Cooling and Annealing Time in the Melting Growth (용융성장시 서냉시간과 후열처리시간에 따른 임계특성)

  • 임성훈;최명호;강형곤;정동철;박종광;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.327-333
    • /
    • 1998
  • The influence of slow cooling and annealing time in $O_2$in MPEG process on $J_c$ was investigated. From the measurement of $J_c$,SEM and XRD, it was observed that the critical current density was related with the slow cooling time and annealing time in $O_2$. The value of $J_c$ was the highest at slow cooling time of 40 hour. And also, the value of $J_c$ along the annealing time in $O_2$in the case of the slow cooling time of 40 hours was inclined to increase with annealing time. Consequently, it can be suggested that proper slow cooling time and annealing time after slow cooling in MPMG process be important to improve the critical characteristics.

  • PDF

Annealing Characteristic of Phosphorus Implanted Silicon Films using an Ion Mass Doping Method (Ion Mass Doping 법을 이용한 Phosphorus 주입된 실리콘 박막의 Annealing 특성)

  • 강창용;최덕균;주승기
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.4
    • /
    • pp.234-240
    • /
    • 1994
  • A large area impurity doping method for poly-Si TFT LCD has been developed. The advantage of this method is the doping of impurities into Si over a large area without mass separation and beam scanning. Phosphorus diluted in hydrogen was discharged by RF(13.56MHz) power and ions from discharged gas were accelerated by DC acceleration voltage and were implanted into deposited Si films. The annealing characteristic of this method was similar to that of the ion implantation method in the low doping concentration. Three mechanisms were evolved in the annealing characteristics of phosphorus doped Si films. Point defects annihilation and the retrogradation of dopant atoms at grain boundaries as a result of grain growth played a major role at low and high annealing temperature, respectively. However, due to the dopant segregation, the reverse annealing range existed at intermediate annealing temperature.

  • PDF

Reverse annealing of boron doped polycrystalline silicon

  • Hong, Won-Eui;Ro, Jae-Sang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.140-140
    • /
    • 2010
  • Non-mass analyzed ion shower doping (ISD) technique with a bucket-type ion source or mass-analyzed ion implantation with a ribbon beam-type has been used for source/drain doping, for LDD (lightly-doped-drain) formation, and for channel doping in fabrication of low-temperature poly-Si thin-film transistors (LTPS-TFT's). We reported an abnormal activation behavior in boron doped poly-Si where reverse annealing, the loss of electrically active boron concentration, was found in the temperature ranges between $400^{\circ}C$ and $650^{\circ}C$ using isochronal furnace annealing. We also reported reverse annealing behavior of sequential lateral solidification (SLS) poly-Si using isothermal rapid thermal annealing (RTA). We report here the importance of implantation conditions on the dopant activation. Through-doping conditions with higher energies and doses were intentionally chosen to understand reverse annealing behavior. We observed that the implantation condition plays a critical role on dopant activation. We found a certain implantation condition with which the sheet resistance is not changed at all upon activation annealing.

  • PDF

Investigation of Mechanical Stability of Nanosheet FETs During Electro-Thermal Annealing (Nanosheet FETs에서의 효과적인 전열어닐링 수행을 위한 기계적 안정성에 대한 연구)

  • Wang, Dong-Hyun;Park, Jun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Reliability of CMOS has been severed under aggressive device scaling. Conventional technologies such as lightly doped drain (LDD) and forming gas annealing (FGA) have been applied for better device reliability, but further advances are modest. Alternatively, electro-thermal annealing (ETA) which utilizes Joule heat produced by electrodes in a MOSFET, has been newly introduced for gate dielectric curing. However, concerns about mechanical stability during the electro-thermal annealing, have not been discussed, yet. In this context, this paper demonstrates the mechanical stability of nanosheet FET during the electro-thermal annealing. The effect of mechanical stresses during the electro-thermal annealing was investigated with respect to device design parameters.