• Title/Summary/Keyword: anode heating

Search Result 41, Processing Time 0.031 seconds

ANODE HEATING AND MELTING IN THE ARGON GTA

  • Terasaki, Hidenori;Tanaka, Manabu;Fujii, Hidetoshi;Ushio, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.746-751
    • /
    • 2002
  • In order to make clear the physical relation among the arc plasma, the anode heat transfer and the weld penetration, the results of experimental measurements of temperatures of arc plasma, the distributions of heat input and current on the anode and the weld penetration were presented The experimental results showed that the electron temperature above the anode and current and heat input density on the anode was dominated by the position of the cathode. Furthermore, it was showed that electron temperature of arc plasma was dominated by the cathode shape. These results were related with the results of the welded penetration measurements. As a result, it was showed that the electron temperature above the anode and current density distribution on the anode decided the heat input density distribution on the anode and that the heat input density on the anode remarkably dominated the size of the weld penetration in argon GTA welding process. Furthermore, it was suggested that the cathode played the important role in the determination of the weld penetration in argon GTA welding process.

  • PDF

Surface Flame Patterns and Stability Characteristics of Premixed Burner System for Fuel Reformers (개질기용 예혼합 버너의 화염형태 및 안정성 특성)

  • Lee, Pil-Hyong;Park, Bong-Il;Jo, Soon-Hye;Hwang, Sang-Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.8-14
    • /
    • 2010
  • Fuel processing systems which convert fuel into rich gas (such as stream reforming, partial oxidation, autothermal reforming) need high temperature environment ($600{\sim}1,000^{\circ}$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1~5 kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas, mixture of natural gas & anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural gas & anode off gas as reformer fuel in the porous ceramic burner. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity. In particular, the blue surface flame is found to be very stable at a very lean equivalence ratio at heat capacity and different fuels. The exhausted NOx and CO measurement shows that the blue surface flame represents the lowest NOx and CO emissions since it remains very stable at a lean equivalence ratio.

Combustion Characteristics of Premixed Burner for Fuel Reformer (개질기용 예혼합 연소장치의 연소특성 연구)

  • Lee, Pil-Hyong;Lee, Jae-Young;Han, Sang-Seok;Park, Chang-Soo;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2181-2185
    • /
    • 2008
  • Fuel processing systems which convert HC fuel into $H_2$ rich gas (such as stream reforming, partial oxidation, auto-thermal reforming) need high temperature environment($600-1000^{\circ}C$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1-5kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural & anode off gas as reformer fuel. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity.

  • PDF

Electrochemical Characterization of Tin Oxide Prepared by Microwave Heating (마이크로파로 합성한 주석산화물의 전기화학적 특성)

  • Kim, Won-Tae;Lee, Eu-Kyung;Cho, Byung-Won;Lee, Joong-Kee;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1119-1123
    • /
    • 2008
  • Tin oxide was prepared by microwave heating for anode material of lithium ion battery. The samples were heated at 300, 500 and $700^{\circ}C$ for 3h under flowing oxygen after microwave heating. The effect of microwave heating on the electrochemical performance of the manufactured tin oxide and the reversible capacity performance were investigated. Tin oxide heated at $500^{\circ}C$ showed higher capacity than those at $300^{\circ}C$ and $700^{\circ}C$ under microwave heating condition. Comparing microwave and furnace heating, microwave heating condition showed higher capacity. The discharge capacity after microwave heating and $500^{\circ}C$ heating showed 1,500 mAh/g.

Performance Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 성능 특성)

  • Song Rak-Hyun;Song Keun-Suk
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.368-373
    • /
    • 2004
  • To improve the conventional cathode-supported tubular solid oxide fuel cell (SOFC) from the viewpoint of low cell power density, expensive fabrication process and high operation temperature, the anode-supported tubular solid oxide fuel cell was investigated. The anode tube of Ni-8mol% $Y_2$O$_3$-stabilized $ZrO_2$ (8YSZ) was manufactured by extrusion process, and, the electrolyte of 8YSZ and the multi-layered cathode of $LaSrMnO_3$(LSM)ILSM-YSZ composite/$LaSrCoFeO_3$ were coated on the surface of the anode tube by slurry dip coating process, subsequently. Their cell performances were examined under gases of humidified hydrogen with 3% water and air. In the thermal cycle condition of heating and cooling rates with $3.33^{\circ}C$/min, the anode-supported tubular cell showed an excellent resistance as compared with the electrolyte-supported planar cell. The optimum hydrogen flow rate was evaluated and the air preheating increased the cell performance due to the increased gas temperature inside the cell. In long-term stability test, the single cell indicated a stable performance of 300 mA/$\textrm{cm}^2$ at 0.85 V for 255 hr.

Growth Mechanism of SnO Nanostructures and Applications as an Anode of Lithium-ion Battery

  • Shin, Jeong-Ho;Park, Hyun-Min;Song, Jae-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.598-598
    • /
    • 2012
  • Rechargeable lithium-ion batteries have been considered the most attractive power sources for mobile electronic devices. Although graphite is widely used as the anode material for commercial lithium-ion batteries, it cannot fulfill the requirement for higher storage capacity because of its insufficient theoretical capacity of 372 mAh/g. For the sake of replacing graphite, Sn-based materials have been extensively investigated as anode materials because they can have much higher theoretical capacities (994 mAh/g for Sn, 875 mAh/g for SnO, 783 mAh/g for $SnO_2$). However, these materials generate huge volume expansion and shrinkage during $Li^+$ intercalation and de-intercalation and result in the pulverization and cracking of the contact between anode materials and current collector. Therefore, there have been significant efforts of avoiding these drawbacks by using nanostructures. In this study, we present the CVD growth of SnO branched nanostructures on Cu current collector without any binder, using a combinatorial system of the vapor transport method and resistance heating technique. The growth mechanism of SnO branched nanostructures is introduced. The SnO nanostructures are evaluated as an anode for lithium-ion battery. Remarkably, they exhibited very high discharge capacities, over 520mAh/g and good coulombic efficiency up to 50 cylces.

  • PDF

Characterization of Spherical NiO-YSZ Anode Composites for Solid Oxide Fuel Cells Synthesized by Ultrasonic Spray Pyrolysis

  • Lim, Chae-Hyun;Lee, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.243-247
    • /
    • 2014
  • Spherical NiO-YSZ particles were synthesized by ultrasonic spray pyrolysis (USP). The morphology of the synthesized particles can be modified by controlling parameters such as precursor pH, carrier-gas flow-rate, and temperature of the heating zone. The synthesized spherical NiO-YSZ particles have rough surface morphology at high carrier-gas flow-rates due to rapid gas exhaustion and insufficient particle ordering. The Ni-YSZ cermet anode synthesized by ultrasonic spray pyrolysis at a flow rate of l L/min, with precursor solution at pH4, showed a higher maximum power density of 256 $mW/cm^2$ compared to a conventionally mixed Ni-YSZ anode (185 $mW/cm^2$) at $800^{\circ}C$. While the area-specific resistance of conventionally mixed Ni-YSZ anodes increases gradually with operation time (indicating performance degradation), the Ni-YSZ anode synthesized by USP does not exhibit any performance degradation, even after 500 h.

CORROSION BEHAVIOR OF Al-Zn ALLOY AS A SACRIFICIAL ANODE OF ORV TUBES

  • Jin, Huh;Lee, Ho-Kyun;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.452-455
    • /
    • 1999
  • ORV which vaporizes LNG to NG is consisted of tube and header whose substrate is aluminum alloy. The corrosion of the tube is very severe because of sea water being used as the heating source. In this research to protect ORV substrate material, the corrosion behavior of aluminum alloys was investigated for the sacrificial role of Al-Zn alloy for ORV tubes. The electrochemical behavior of aluminum alloys in sea water was investigated. The corrosion behavior of thermally-sprayed and cladded samples were compared through salt spray tests. Al-Zn alloy can act as a sacrificial anode and cladded Al-Zn alloy has a better corrosion resistance than that of thermally sprayed one. The galvanic effect of Al-Zn to substrate material was conformed from scratched sample tests.

  • PDF

Combustion Characteristic of Anode Off Gas for Fuel Cell Reformer (개질기용 Anode Off Gas의 연소특성에 관한 연구)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.5-10
    • /
    • 2012
  • The reformer system is a chemical device that drives the conversion of hydrocarbon to hydrogen rich gas under high temperature environment($600-1,000^{\circ}C$). Generally, NG(Natural Gas) or AOG(Anode Off Gas) is used as fuel of fuel cell reformer combustion system. The experimental study to analyze the combustion characteristics of a premixed ceramic burner used for 0.5-1.0 kW fuel cell reformer was performed. Ceramic burner experiments using NG and AOG were carried out to investigate the flame stability characteristics by heating capacity, equivalence ratio and different fuels respectively. The results show that surface flames can be classified into green, red, blue and lift-off flames as the equivalence ratio of methane-air mixture decreases. And the stable flames can be established using NG and AOG as reformer fuel in the perforated ceramic burner. In particular, the blue flame is found to be stable at a lean equivalence ratio under different mixture conditions of NG and AOG for the 0.5 to 1.0 kW fuel cell system power range. NOx emission is under 60 ppm between 0.70 to 0.78 of equivalence ratio and CO emission is under 50 ppm between 0.70 to 0.84 of equivalence ratio.

Low temperature deposition of LaMnO3 on IBAD-MgO template assisted by plasma (IBAD-MgO 기판상에 플라즈마를 이용한 LaMnO3 저온 증착)

  • Kim, H.S.;Oh, S.S.;Ha, D.W.;Ha, H.S.;Ko, R.K.;Moon, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.1-3
    • /
    • 2012
  • LMO($LaMnO_3$) buffer layer of superconducting coated conductor was deposited on IBAD-MgO template in the plasma atmosphere at $650^{\circ}C$ which is relatively low compared with conventional deposition temperature of more than $800^{\circ}C$. Deposition method of LMO was DC sputtering, and target and deposition chamber were connected to the cathode and anode respectively. When DC voltage was applied between target and chamber, plasma was formed on the surface of target. The tape substrate was located with the distance of 10 cm between target and tape substrate. When anode bias was connected to the tape substrate, electrons were attracted from plasma in target surface to the tape substrate, and only tape substrate was heated by electron bombardment without heating any other zone. The effect of electron bombardment on the surface of substrate was investigated by increasing bias voltage to the substrate. We found out that the sample of electron bombardment had the effect of surface heating and had good texturing at low controlling temperature.