• Title/Summary/Keyword: antenna array

Search Result 1,255, Processing Time 0.033 seconds

Design of Circularly Polarized Array Antenna for 5.8GHz Microwave Wireless Power Transmission (5.8GHz 마이크로파 무선전력전송을 위한 원형 편파 배열 안테나 설계)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.20-25
    • /
    • 2018
  • In this paper, we have designed circularly polarized array antenna for 5.8GHz microwave wireless power transmission. To obtain high antenna gain, we studied a single patch antenna, a $2{\times}1$ array antenna, a $2{\times}2$ array antenna, a $2{\times}4$ array antenna, and a $4{\times}4$ array antenna. Commonly, characteristics of each antenna have a frequency of 5.8 GHz and Right Hand Circular Polarization(RHCP) of circular polarization. Also, the results were obtained with the design to each antenna that the return loss was less than -10dB and the axial ratio was less than 3dB. The gain of the antennas was 6.08dBi for a single patch antenna, 9.69dBi for a $2{\times}1$ array antenna, 12.99dBi for a $2{\times}2$ array antenna, 15.72dBi for a $2{\times}4$ array antenna and 18.39dBi for a $4{\times}4$ array antenna. When the elements of the array antenna were increased, it was confirmed that it increased by about 3dBi.

Array Calibration for CDMA Smart Antenna Systems

  • Kyeong, Mun-Geon;Park, Hyung-Geun;Oh, Hyun-Seo;Jung, Jae-Ho
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.605-614
    • /
    • 2004
  • In this paper, we investigate array calibration algorithms to derive a further improved version for correcting antenna array errors and RF transceiver errors in CDMA smart antenna systems. The structure of a multi-channel RF transceiver with a digital calibration apparatus and its calibration techniques are presented, where we propose a new RF receiver calibration scheme to minimize interference of the calibration signal on the user signals. The calibration signal is injected into a multi-channel receiver through a calibration signal injector whose array response vector is controlled in order to have a low correlation with the antenna response vector of the receive signals. We suggest a model-based antenna array calibration to remove the antenna array errors including mutual coupling errors or to predict the element patterns from the array manifold measured at a small number of angles. Computer simulations and experiment results are shown to verify the calibration algorithms.

  • PDF

Expansion of Variable Range of Oscillation Frequency of Active Phased Array Antenna by a Varactor Diode (바랙터다이오드에 의한 능동 위상차 배열 안테나의 발진 주파수 가변 범위의 확장)

  • 최영규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.521-528
    • /
    • 2003
  • A varactor diode was utilized in order to expand variable range of the natural oscillation frequency of an active phased-array antenna. We have conformed experimentally that the variable range of the natural oscillation frequency was expanded about three times in the oscillator controlled by the varactor diode. When frequency difference was given to the oscillators in the two elements antenna system, phase difference was appeared between the oscillators. The 2-, 3-, 5-elements patch antenna array was composed for the beam scanning experiments. All the above patch antennas showed good phased array characteristics. The experimental results are as follows that the scanning angle of the 2-elements array antenna is 28.6$^{\circ}$, the 3-elements array antenna is 29.4$^{\circ}$, and the 5-elements array antenna is 26.2$^{\circ}$.

On the Utilization of Polarization Dependency Acquired by an Intentionally Misaligned Antenna Array for Mitigation of GPS Jammers

  • Park, Kwansik;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.291-296
    • /
    • 2021
  • Recently, the dual-polarized antenna array has drawn attention due to the dependency of its signal processing gain on the signal polarization. Even though this polarization dependency makes it possible to mitigate a non-right-hand circularly polarized (non-RHCP) jamming signal from the same direction as a GPS signal, the dual-polarized antennas are not yet widely used for various applications. This study suggests a method that can acquire the polarization dependency of the signal-processing gain by intentionally misaligning antenna elements in a single-polarized antenna array. The simulation results show that the proposed method can successfully mitigate a non-RHCP jammer from the same direction as a GPS signal as if a dual-polarized antenna array does and provide comparable signal-to-jammer-plus-noise ratio (SJNR) performance with a completely aligned single-polarized antenna array and a dual-polarized antenna array.

The Radiation Characteristics of a Linear Phased Array Antenna using a Pin Array Patch Antenna as an Element (핀 배열 안테나를 단위 안테나로 사용한 선형 위상 배열 안테나의 방사 특성)

  • Kim, Tae-Young;Kim, Gun-Su;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.44-51
    • /
    • 2009
  • The radiation characteristics of a pin array patch antenna phased array are compared to those of a conventional patch antenna phased array. The performance of a pin array patch antenna phased array is much improved than that of a conventional patch antenna phased array because the mutual coupling between the adjacent pin array patch antennas is very small compared to that between the adjacent conventional patch antennas. The radiation characteristics of a pin array patch antenna phased array show the superior performance such as low variation of the gain of the main beam and the side lobe level for the variation of the direction of the main beam.

Performance Analysis of the Anti-Spoofing Array Antenna with Eigenvector Nulling Algorithm

  • Lee, Kihoon;Song, Min Kyu;Lee, Jang Yong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.181-189
    • /
    • 2022
  • The public open signals from Global Navigation Satellite System (GNSS) including Global positioning system (GPS) are used widely by many peoples in the world except for the public regulated restriction signals which are encrypted. Nowadays there are growing concerns about GNSS signal spoofing which can deceive the GNSS receivers by abusing these open services. To counter these spoofing threats, many researches have been studied including array antenna techniques which can detect the direction of arrival by means of Multiple Signal Classification (MUSIC) algorithm. Originally the array antenna techniques were developed to countermeasure the jamming signal in electronic warfare by using the nulling or beamforming algorithm toward a certain direction. In this paper, we study the anti-spoofing techniques using array antenna to overcome the jamming and spoofing issues simultaneously. First, we will present the theoretical analysis results of spoofing signal response of Minimum Variance Distortionless Response (MVDR) algorithm in array antenna. Then the eigenvector algorithm of covariance matrix is suggested and verified to work with the existing anti-jamming method. The modeling and simulation are used to verify the effectiveness of the anti-spoofing algorithm. Also, the field test results show that the array antenna system with the proposed algorithms can perform the anti-spoofing function. This anti-spoofing method using array antenna is very effective in the view point of solving both the jamming and spoofing problems using the same array antenna hardware.

Design of Array Antenna with Active Antenna Element (LNA가 장착된 안테나 소자를 이용한 배열 안테나 설계)

  • 이용기;김성남;이상원;김영식;천창율
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.279-285
    • /
    • 2004
  • In this paper, low noise amplifier(LNA), aperture coupled patch antenna and $4{\times}4$ array antenna are designed in the frequency range from 11.7㎓ to 12㎓. Array antennas with and without LNA at the antenna element are fabricated and the performances are measured including noise figure(NF). The noise figure calculation for overall system was conducted and compared with the measured data to verify our measurement method. The measured overall noise figure of the array antenna with LNA at the antenna element is lower than that of array without LNA as expected.

Performance Evaluation of Cascade AOA Estimation Algorithm Based on Square Array Antenna (정방배열 안테나 기반 캐스케이드 도래각 추정 알고리즘 성능평가)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1053-1060
    • /
    • 2019
  • The satellite antenna for collecting information is mainly classified into reflector antenna, lens antenna, and phased array antenna. Among them, the phased array antenna with the excellent antenna pattern control performance for a multi-beam system is frequently used. Although the terrestrial signal information collection based on the satellite is not much effected geographically, it requires the accurate angle-of-arrival (AOA) information of the interesting signal. In this paper, we discuss the characteristics and the advantages/disadvantages of the antenna array shape employed in the phased array antenna. In addition, we present the Cascade AOA estimation algorithm based on a square array antenna mounted on the satellite receiver, and show the performance evaluation results through the computer simulation.

A 94-GHz Phased Array Antenna Using a Log-Periodic Antenna on a GaAs Substrate

  • Uhm, Won-Young;Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.81-85
    • /
    • 2015
  • A 94-GHz phased array antenna using a log-periodic antenna has been developed on a GaAs substrate. The developed phased array antenna comprises four log-periodic antennas, a phase shifter, and a Wilkinson power divider. This antenna was fabricated using the standard microwave monolithic integrated circuit (MMIC) process including an air bridge for unipolar circuit implementations on the same GaAs substrate. The total chip size of the fabricated phased array antenna is 4.8 mm × 4.5 mm. Measurement results showed that the fabricated phased array antenna had a very wide band performance from 80 GHz to 110 GHz with return loss characteristics better than -10 dB. In the center frequency of 94 GHz, the fabricated phased array antenna showed a return loss of -16 dB and a gain of 4.43 dBi. The developed antenna is expected to be widely applied in many applications at W-band frequency.

Effect of the Patch Width on the Radiation Characteristics of a Pin Array Patch Antenna (패치의 폭이 핀 배열 패치 안테나의 방사 특성에 미치는 효과)

  • Yoon, Young-Min;Kim, Tae-Young;Cho, Myung-Ki;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.1
    • /
    • pp.77-83
    • /
    • 2010
  • Radiation characteristics of $5{\times}4$ pin array patch antennas are compared to those of $5{\times}2$ pin array patch antennas for several substrate thicknesses using the computer simulation. Since the number of unit cells of a $5{\times}2$ pin array patch antenna is half of that of a $5{\times}4$ pin array patch antenna, the number of pins used in a $5{\times}2$ pin array patch antenna is half of that in a $5{\times}4$ pin array patch antenna and the patch width of a $5{\times}2$ pin array patch antenna is very small compared to that of a $5{\times}4$ pin array patch antenna. However, the radiation characteristics of a $5{\times}2$ pin array patch antenna are almost similar to those of a $5{\times}4$ pin array patch antenna.