• Title/Summary/Keyword: anti-peptide antibody

Search Result 55, Processing Time 0.026 seconds

Production rind Characterization of the Polyclonal Anti-peptide Antibody for $\beta$-adrenergic Receptor

  • Kim, Hee-Jin;Shin, Chan-Young;Sang Bong lee;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.2 no.4
    • /
    • pp.303-309
    • /
    • 1994
  • The analysis of membrane receptors for hormones and neurotransmitters has progressed considerably by pharmacological and biochemical means and more recently through the use of specific antibodies. Two kinds of antibodies could be produced, one is from synthetic peptides and the other from proteins such as purified receptor. Anti-peptide antibodies gave some advantages; epitope is evident and also receptor purification in quantity is not prerequisite. It can be also applied to the study of receptor structure-activity relationship. The purpose of the present study was 1) to produce and characterize a polyclonal antibody against a synthetic $\beta$2-adrenergic receptor peptide(Phe-Gly-Asn-Phe-Trp-Cys-Phe-Trp-Thr-Ser-Ile-Asp-Val-Leu) and 2) to determine the effects of this antibody on the $\beta$-adrenergic receptor ligand interaction. The peptide sequence contains an amino acid residue such as Asp-113 which was identified as one of important component for receptor-ligand interaction in site-directed mutagenesis studies. Production of antibody was performed by immunization of rabbits through popliteal lymph node with the peptide coupled with Keyhole Limpet Hemocyanin (KLH). The titer of antibody against this peptide was 1 : 1000. The anti-peptide antibody was able to detect a 67 kDa protein band in western blot corresponding to the molecular weight of the $\beta$-adrenergic receptor in partially purified receptor fraction derived from guinea pig lung. The antisera inhibited the specific binding of [$^3$H]dihydroalprenolol to $\beta$-adrenergic receptor in a concentration-dependent manner. The results from this study suggest that the peptide sequence selected in the present study is important for the receptor ligand interaction.

  • PDF

Diagnostic Value of Immunoglobulin G Anti-Deamidated Gliadin Peptide Antibody for Diagnosis of Pediatric Celiac Disease: A Study from Shiraz, Iran

  • Anbardar, Mohammad Hossein;Haghighi, Fatemeh Golbon;Honar, Naser;Zahmatkeshan, Mozhgan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.4
    • /
    • pp.312-320
    • /
    • 2022
  • Purpose: Screening serologic tests are important tools for the diagnosis of celiac disease (CD). Immunoglobulin (Ig)G anti-deamidated gliadin peptide (anti-DGP) is a relatively new autoantibody thought to have good diagnostic accuracy, comparable to that of anti-tissue transglutaminase (anti-tTG) antibody. Methods: Pediatric patients (n=86) with a clinical suspicion of CD were included. Duodenal biopsy, anti-tTG, and IgG anti-DGP antibody tests were performed. The patients were divided into CD and control groups based on the pathological evaluation of duodenal biopsies. The diagnostic accuracy of serological tests was determined. Results: IgA anti-tTG and IgG anti-DGP antibodies were positive in 86.3% and 95.4% of patients, respectively. The sensitivity, specificity, and diagnostic accuracy of the IgA anti-tTG test were 86.3%, 50.0%, and 68.6%, respectively, and those of the IgG anti-DGP test were 95.4%, 85.7%, and 90.7%, respectively. The area under the receiver operating characteristic (ROC) curve was 0.84 (95% confidence interval [CI], 0.74-0.91) for IgA anti-tTG test and 0.93 (95% CI, 0.86-0.97) for IgG anti-DGP test. The comparison of IgA anti-tTG and IgG anti-DGP ROC curves showed a higher sensitivity and specificity of the IgG anti-DGP test. Conclusion: IgG anti-DGP is a reliable serological test for CD diagnosis in children. High tTG and DGP titers in the serum are suggestive of severe duodenal atrophy. The combined use of IgA anti-tTG and IgG anti-DGP tests for the initial screening of CD can improve diagnostic sensitivity.

Cell-Specific Targeting of Texas Red with Anti-Ep-CAM Antibody

  • Lee, Soo-Chul;Tae, Gun-Sik
    • Journal of Photoscience
    • /
    • v.12 no.3
    • /
    • pp.123-127
    • /
    • 2005
  • The polyclonal antibody was generated against the peptide fragment of 62 amino acid residues (D 181-T242) near the COOH-terminal region of the extracellular domain of epithelial-cell adhesion molecule (Ep-CAM) and shown to be able to recognize Ep-CAM in competitive ELISA. Then, sulforhodamine 101 acid chloride (so called Texas red), a fluorescence dye, was conjugated to the affinity-purified anti-Ep-CAM antibody utilizing the reaction between the aliphatic amines of antibody and the sulfonyl chloride of Texas red. The molar ratio of Texas red to antibody was estimated to be approximately 1.86 by measuring optical densities at 280 nm and 596 nm, implying that the two molecules of Texas red at most were conjugated to antibody. The anti-Ep-CAM antibody-Texas red conjugate was then used for immunohistochemistry of CT-26 murine colon carcinoma cells. Based upon the fluorescence microscope images, anti-Ep-CAM antibody is able to deliver Texas red specifically to the surface of CT-26 cells on which Ep-CAM was actively expressed. This result indicates that anti-Ep-CAM antibody could be useful for the tissue-specific delivery of photosensitizers via antigen-antibody interaction.

  • PDF

Characterization of KI-24, a Novel Murine Monoclonal Antibody with Specific Reactivity for the Human Immunodeficiency Virus-1 p24 Protein

  • Shin, Song-Yub;Park, Jung-Hyun;Lee, Myung-Kyu;Jang, So-Youn;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.33 no.1
    • /
    • pp.92-95
    • /
    • 2000
  • The HIV-1 p24(202-221) sequence ETINNEEEWDRVHPV HAGP contains a B-cell epitope with the earliest immune response and the highest antibody titer against anti-mouse sera obtained by immunization with p24 antigens. A novel mouse monoclonal antibody (mAb) was generated against the immunodominant B-cell epitope of the HIV-1 p24 capsid protein, p24(202-221). BALB/c mice were immunized with the four branched multiple antigenic peptide (MAP) containing the HIV-1p24(202-221) sequence, and antibody-secreting hybridoma were produced by fusion of mouse splenocytes with P3X63Ag8.653, mouse myeloma cells. One clone which produced the antigen-specific mAb named KI-24 (Isotype IgG1, light chain: ${\kappa}$) was identified. mAb KI-24 was highly specific for both the p24(202-221) and p24 proteins when analyzed by ELISA and Western blotting. Since p24(202-221) also contains a cytotoxic T-lymphocyte epitope, this specfic peptide epitope and the monoclonal antibody with specific reactivity against the p24 protein and p24(202-221) can be used in peptide vaccine development and p24 antigen detection from HIV patients.

  • PDF

Production of polyclonal anti-$\beta$-adrenergic receptor antibody and it′s effects on receptor ligand binding

  • Kim, Hee-Jin;Shin, Chan-Young;Noh, Min-Su;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.86-86
    • /
    • 1995
  • The analysis of membrane receptors for hormones and neurotransmitters has progressed considerably by pharmacological and biochemical means and more recently by the use of specific anti-receptor antibodies. A 14-mer peptide (from Phe102 to Leu115 of ${\beta}$2-adrenergic receptor) was synthesized and this peptide was coupled to carrier protein Keyhole Limpet Hemocyanin(KLH) by glutaraldehyde method. A 0.5mg of KLH-coupled peptide was emulsified with equal volume of complete Freund's adjuvant and injected via popliteal lymph node to each of the three Newzealnd White rabbits. Booster injections were repeated at 4 weeks interval for three times with incomplete Freund's adjuvants. One week after the final injection, serum was prepared from ear artery. Nonspecific immunoglobulins were removed by passing the serum through KLH-Sepharose 6B affinity matrix and further by incubation with bovine lung aceton powder. The titer of the antibody for synthetic peptide which was determined by enzyme linked immunosorbent assay(ELISA) was about l/l,000. The antibody produced in this study revealed 67kDa protein band in the western blot of partially purified guinea pig lung ${\beta}$-adrenergic receptor preparation. The antibody inhibited ${\beta}$-adrenergic antaginist [3H] Dihydroalprenolol binding to soluble ${\beta}$-adrenergic receptor by 25% while control sera did not show any inhibitory effects, The result of this study suggests that the peptide sequence selected in this study may play some important roles in adrenergic receptor-ligand interaction.

  • PDF

Establishement of Antibody Selection by Ribosome Display (Ribosome Display를 이용한 항체선별 방법의 확립)

  • Lee, Myung-Shin;Kwon, Myung-Hee;Hwang Kim, Kyongmin;Park, Sun;Shin, Ho-Joon;Kim, Hyung-Il
    • IMMUNE NETWORK
    • /
    • v.3 no.3
    • /
    • pp.219-226
    • /
    • 2003
  • Background: Phage display is the most widely used technique among display methods to produce monoclonal antibody fragment with a specific binding activity. Having a large library for efficient antibody display/selection is quite laborious process to have more than $10^9$ members of transformants. To overcome these limitations, several in vitro selection approaches have been reported. Ribosome display that links phenotypes, proteins, directly to genotype, mRNA, is one of the in vitro display methods. Ribosome display can reach the size of scFv library up to $10^{14}$ molecules and it can be further diversified during PCR steps. To select the high affinity scFv from one pot library, we established ribosome display technique by modifying the previously reported eukaryotic translation system. Methods: To establish the antibody selection system by ribosome display, we used 3D8, anti-DNA antibody. A 3D8 scFv was synthesized in vitro by an in vitro transcription-translation system. The translated 3D8 scFv and the encoding 3D8 mRNA are connected to the ribosome. These scFv-ribosome-mRNA complexes were selected by binding to their specific antigens. The eluted mRNAs from the complexes are reverse transcribed and re-amplified by PCR. To apply this system, antibody library from immunized mouse with terminal protein (TP)-peptide of hepatitis B virus DNA polymerase TP domain was also used. This TP-peptide encompasses the 57~80 amino acid residues of TP. These mRNA/ribosome/scFv complexes by our system were panned three times against TP-peptide. The enrichment of antibody from library was determined by radioimmunoassay. Results: We specifically selected 3D8, anti-DNA antibody, against ssDNA as a model system. The selected 3D8 RNAs sequences from translation complexes were recovered by RT-PCR. By applying this model system, we enriched TP-peptide-specific scFv pools through three cycles of panning from immunized library. Conclusion: We show that our translating ribosome complexes are well maintained and we can enrich the TP-specific scFv pools. This system can be applied to select specific antibody from an antibody library.

Production and characterization of cross-reactive anti-Porphyromonas gingivalis heat shock protein 60 monoclonal antibody (항-Porphyromonas gingivalis heat shock protein 60 단클론항체의 생성과 특성 규명)

  • Lee, Ji-Young;Lee, Ju-Youn;Kim, Seong-Jo;Choi, Jeom-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.565-578
    • /
    • 2008
  • Purpose: Porphyromonas gingivalis(P. gingivalis) heat shock protein (HSP)60 may play a role in the immunopathogenesis of periodontitis as well as atherosclerosis by modulating autoimmune reaction due to its high level of sequence homology between bacteria and human counterpart. The purpose of this study was to identify immunodomiant epitope of P. gingivalis HSP60 that is reactive exclusively to the homologous bacteria without reacting with human HSP. Materials and methods: The present study was performed to identify the peptide specifically recognized by anti-P. gingivalis HSP60 monoclonal antibodies mono-reactive to P. gingivalis HSP60. Results: Four different hybridomas were cloned producing monoclonal IgG antibodies exclusively to P. gingivalis HSP60. Thirty seven synthetic peptides (20-mer with 5-amino acid overlapping) were synthesized. All of these peptide were subject to SDS-PAGE for immunblot analysis. One peptide (TVPGGGTTYIRAIAALEGLK) and the other peptide (TLVVNRLRGSLKICAVKAPG) were recognized by all and one of the four monoclonal antibodies, respectively, that reacted solely with P. gingivalis HSP60. Immunohistochemistry to identify the localization of the HSP60 in the diseased gingival tissues revealed that all of the four monoclonal antibodies were highly reacted with the diseased gingival tissue than normal gingival tissue. Conclusion: The P. gingivalis HSP60 peptides (TVPGGGTTYIRAIAALEGLK and TLVVNRLRGSLKICAVKAPG, respectively) are positively involved in the immunopathologic process of periodontal disease. The peptide may potentially be developed as vaccine candidates. Further investigations are under way to identify more clones producing monoclonal antibodies reactive to P. gingivalis HSP and to other periodontopathogenic bacteria as well, while maintaining specificities to human counterpart.

Green Tea (-) Epigallocatechin-gallate Induces the Apoptotic Death of Prostate Cancer Cells (녹차 (-)Epigallocatechin-gallate에 의한 전립선암 세포주 DU145 세포고사 기전)

  • 이지현;정원훈;박지선;신미경;손희숙;박래길
    • Toxicological Research
    • /
    • v.18 no.2
    • /
    • pp.183-190
    • /
    • 2002
  • The mechanism by which catechin-mediated cytotoxicity against tumor cells remains to be elusive. To elucidate the mechanical mights of anti-tumor effects, (-)epigallocatechin-gallate (EGCG) of catechin was applied to human prostate cancer DU 145 cells. Cell viability was measured by crystal violet staining. Cell lysates were wed to measure the catalytic activity of caspases by using fluorogenic peptide: Ac-DEVD-AMC for caspase-3 protease, Z-IETD-AFC for caspase-8 protease, Ac-LEHD-AFC for caspase-9 protease as substrates. The equal amounts of protein from cell lysate was separated on SDS-PAGE and analyzed by western blotting with anti-Fas antibody, anti-FasL antibody, anti-BCL2 antibody and anti-Bax antibody. (-)EGCG induced the death of DUl45 cells, which was revealed as apoptosis shown by DNA fragmentation. (-)EGCG induced the activation of caspase family cysteine proteases including caspase-3, -8 and -9 proteases in DU145 cells. Also, (-)EGCG increased the expression of Fas and Fas ligand (FasL) protein in DU145 colls. The expression level of BCL2 was decreased in (-)EGCG treated DU145 cells, whereas Bax protein was increased in a time-dependent manner. We suggest that (-)EGCG-induced apoptosis of DU145 cells is mediated by signaling pathway involving caspase family cysteine protease, mitochondrial BCL2-family protein and Fas/FasL.

Screening of the Antigen Epitopes of Basic Fibroblast Growth Factor by Phage Display

  • Xiang, Junjian;Zhong, Zhenyu;Deng, Ning;Zhong, Zhendong;Yang, Hongyu
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.290-293
    • /
    • 2005
  • In order to investigate the epitope of basic fibroblast growth factor (bFGF) and its immunogenicity, the epitopes of bFGF were screened from the phage display library with monoclonal antibody GF22, which can neutralize the bio-activity of bFGF. By three rounds of screening, the positive phage clones with bFGF epitopes were selected, which can effectively block the bFGF to bind with GF22. Sequence analysis showed that the epitopes shared a highly conservative sequence (Leu-Pro-Pro/Leu-Gly-His-Phe/Ile-Lys). The sequence of PPGHFK was located at 22-27 of the bFGF. The specific immuno-response of mouse could be highly induced by phage clones with the epitopes. And the anti-bFGF activity induced by LPGHFK was 3 times higher than the original sequence, which showed that the mimetic peptide LPLGHIK might be used as a tumor vaccine in the prevention and treatment of tumor.

Production of a Recombinant Anti-Human CD4 Single-Chain Variable-Fragment Antibody Using Phage Display Technology and Its Expression in Escherichia coli

  • Babaei, Arash;Zarkesh-Esfahani, Sayyed Hamid;Gharagozloo, Marjan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.529-535
    • /
    • 2011
  • Single-chain variable fragment (scFv) is a fusion protein of the variable regions of the heavy (VH) and light (VL) chains of immunoglobulin, connected with a short linker peptide of 10 to about 20 amino acids. In this study, the scFv of a monoclonal antibody against the third domain of human CD4 was cloned from OKT4 hybridoma cells using the phage display technique and produced in E. coli. The expression, production, and purification of anti-CD4 scFv were tested using SDS-PAGE and Western blot, and the specificity of anti-CD4 scFv was examined using ELISA. A 31 kDa recombinant anti-CD4 scFv was expressed and produced in bacteria, which was confirmed by SDS-PAGE and Western blot assays. Sequence analysis proved the ScFv structure of the construct. It was able to bind to CD4 in quality ELISA assay. The canonical structure of anti-CD4 scFv antibody was obtained using the SWISS_MODEL bioinformatics tool for comparing with the scFv general structure. To the best of our knowledge, this is the first report for generating scFv against human CD4 antigen. Engineered anti-CD4 scFv could be used in immunological studies, including fluorochrome conjugation, bispecific antibody production, bifunctional protein synthesis, and other genetic engineering manipulations. Since the binding site of our product is domain 3 (D3) of the CD4 molecule and different from the CD4 immunological main domain, including D1 and D2, further studies are needed to evaluate the anti-CD4 scFv potential for diagnostic and therapeutic applications.