• Title/Summary/Keyword: antiherpetic agent

Search Result 4, Processing Time 0.021 seconds

Antiviral Activity of Some Flavonoids on Herpes Simplex Viruses (수종 Flavonoid의 항허피스바이러스효과)

  • Lee, Ji-Hyun;Kim, Young-So;Lee, Chong-Kil;Lee, Hyuk-Koo;Han, Seong-Sun
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.1
    • /
    • pp.34-39
    • /
    • 1999
  • To search for less toxic antiherpetic agents, the inhibitory effects of twelve kinds of flavonoids including chrysin, quercetin, quercitrin, rutin, fisetin, gossypin, kaempferol, morin, naringenin, naringin, hesperetin and hesperidin on the plaque formation of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in Vero cells were examined by plaque reduction assay in vitro. Some flavonoids tested in this study showed potent antiherpetic activity, reducing intracellular replication of herpes simplex viruses when Vero cell monolayers were infected and subsequently cultured in medium containing flavonoids. Naringenin showed the most potent antiviral activity against HSV-1 with selectivity index (SI) of 19.1 and hesperetin showed the most potent antiviral activity against HSV-2 with SI of 9.8. These results suggest that some flavonoids may be a potential therapeutic agent for the treatment and prevention of herpes simplex virus infections.

  • PDF

Possible Mechanism Underlying the Antiherpetic Activity of a Proteoglycan Isolated from the Mycelia of Ganoderma lucidum in Vitro

  • Li, Zubing;Liu, Jing;Zhao, Yifang
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • GLPG (Ganoderma lucidum proteoglycan) was a bioactive fraction obtained by the liquid fermentation of the mycelia of Ganoderma lucidum, EtOH precipitation, and DEAE-cellulose column chromatography. GLPG was a proteoglycan with a carbohydrate: protein ratio of 10.4: 1. Its antiviral activities against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) were investigated using a cytopathic inhibition assay. GLPG inhibited cell death in a dose-dependent manner in HSV-infected cells. In addition, it had no cytotoxic effect even at 2 mg/ml. In order to study the mode of action of the antiviral activity of GLPG, cells were treated with GLPG before, during, and after infection, and viral titer in the supernatant of cell culture 48 h post-infection was determined using a $TCID_{50}$ assay. The antiviral effects of GLPG were more remarkable before viral treatment than after treatment. Although the precise mechanism has yet to be defined, our work suggests that GLPG inhibits viral replication by interfering with the early events of viral adsorption and entry into target cells. Thus, this proteoglycan appears to be a candidate anti-HSV agent.

Synthesis of Novel Cyclopropyl Nucleoside Derivatives as Potential Antiherpetic Agent (새로운 사이클로프로필 뉴크레오사이드 유도체의 합성과 생리활성)

  • Kang, Jin-Ah;Chun, Pu-Soon;Moon, Hyung-Ryong
    • YAKHAK HOEJI
    • /
    • v.56 no.4
    • /
    • pp.230-235
    • /
    • 2012
  • Synthesis of novel cyclopropyl pyrimidine and purine nucleoside derivatives 2~8 with ${\alpha}$-configuration was successfully accomplished using an epoxide-ring opening reaction, lactonization, a hydroboration-oxidation reaction and a Mitsunobu reaction as the key steps. Antiviral activities against HSV-1 and -2, HIV-1 and -2, coxsackie B1and B3 viruses and poliovirus were assayed. Three compounds 4, 7 and 8 exhibit cytotoxicity-derived antiviral activity only in HIV-1 and -2.

Combined Effect of Ganciclovir and Vidarabine on the Replication, DNA Synthesis, and Gene Expression of Acyclovir-resistant Herpes Simplex Virus (Acyclovir저항성 Herpes Simplex Virus의 복제, DNA합성 및 형질 발현에 미치는 Ganciclovir 및 Vidarabine의 병용효과에 관한 연구)

  • Yang, Young-Tai;Cheong, Dong-Kyun;Mori, Masakazu
    • The Korean Journal of Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.115-134
    • /
    • 1989
  • Combined effects of ganciclovir (GCV) and vidarabine (ara-A) on the replication, DNA synthesis, and gene expression of wild type-1 herpes simplex virus (HSV-1) and three acyclovir (ACV)-resistant HSV-1 mutants were studied. These mutants include a virus expressing no thymidine kinase $(ACV^r)$, a virus expressing thymidine kinase with altered substrate specificity $(IUdR^r)$, and a mutant expressing altered DNA polymerase $(PAA^r5)$. GCV, an agent activated by herpesvirus specific thymidine kinase, showed potent antiviral activity against the wild type HSV-1(KOS) and DNA polymerase mutant $(PAA^r5)$. The ACV-resistant mutants with thymidine kinase gene $(ACV^r\;and\;IUdR^r)$ were resistant to GCV. All tested wild type HSV-1 or ACV-resistant HSV-1 mutants did not display resistance to vidarabine (are-A). Combined GCV and ara-A showed potentiating synergistic antiviral activity against wild type KOS and $PAA^r5$, and showed subadditive combnined ativiral activity against thymidine kinase mutants. Combined GCV and ara-A more significantly inhibited the viral DNA synthesis in wild type KOS and $PAA^r5-infected$ cells to a greater extent than either agent alone, but the synergism was not determined in $ACV^r$ or $IUdR^r-infected$ cells. These data clearly indicate that combined GCV and ara-A therapy might be useful for the treatment of infections caused by wild type HSV-1 or ACV-resistant HSV-1 with DNA polymerase mutation. ACV-resistant viruses with the mutation in thymidine kinase gene are also, resistant to GCV, but susecptible to ara-A, indicating that ara-A would the drug of choice for the treatment of ACV-resistant HSV-1 which does not express thymidine kinase or expresses thymidine kinase with altered substrate specificity. While the synthesis of viral ${\alpha}-proteins$ of wild type HSV-1 was not affected by ACV, GCV, ara-A, or combined GCV and ara-A, the synthesis of ${\beta}-proteins$ was slightly but significantly increased at the later stage of viral infection by the antiviral agents. The synthesis of ${\gamma}-proteins$ of wild type HSV- 1 was significantly inhibited by ACV, GCV, ara-A, and combined GCV and ara-A. Combined GCV $(5-{\mu}M)$ and ara-A $(100-{\mu}M)$ also significantly altered the expression of viral ${\beta}-and$ ${\gamma}-proteins$, of which efffct was similar to that of GCV $(10-{\mu}M)$ alone. Although ACV at the concentration of $10-{\mu}M$ did not alter the expression of ${\alpha}-$, ${\beta}-$, and ${\gamma}-proteins$ of ACV-resistant $PAA^r5$, GCV and ara-A significantly alter the epression of ${\beta}-and$ ${\gamma}-proteins$, not ${\alpha}-protein$, as same manner as they altered the expression of those proteins in cells inffcted with wild type HSV-1. Combined GCV $(5-{\mu}M)$ and ara-A $(100-{\mu}M)$ altered the expression ${\beta}-and$ ${\gamma}-proteins$ in $PAA^r5$ infected cells, and the effect of combined regimen was comparable of that of GCV $(10-{\mu}M)$. These data indicate that the alteration in the expression of ${\beta}-and$ ${\gamma}-proteins$ in wild type HSV-1 or $PAA^r5$ infected cells could be more significantly affected by combined GCV and are-A than individual GCV or ara-A. In view of the fact that (a) viral ${\alpha}-$, ${\beta}-$, and ${\gamma}-proteins$ are synthesized in a cascade manner; (b) ${\beta}-proteins$ are essential for the synthesis of viral DNA; (c) the synthesis of ${\beta}-proteins$ are inhibited by ${\gamma}-proteins$; and (d) most ${\gamma}-proteins$ are made from the newly synthesized progeny virus, it is suggested that GCV and ara-A, alone or in combination, primarily inhibit the synthesis of viral DNA, and by doing so might exhibit their antiherpetic activity. The alteration in viral protein synthesis in the presence of tested antiviral agents could result from the alteration in viral DNA synthesis. From the present study, it can be concluded that (a) combined GCV and ara-A therapy would be beneficial for the control of inffctions caused by wild type HSV-1 or ACV-resistant DNA polymerase mutants; (b) the combined synergistic activity of GCV and ara-A is due to further decrease in the viral DNA by the combined regimen; (c) ara-A is the drug of choice for the infection caused by ACV-resistant HSV-1 with thymidine kinase mutation; and (d) the alteration in viral protein synthesis by GCV and ars-A, alone or in combination, is mostly due to the decreased synthesis of viral DAN.

  • PDF