• Title/Summary/Keyword: antimicrobial activity

Search Result 3,048, Processing Time 0.031 seconds

The investigation of clindamycin biodegradation in nitrifying activated sludge (질산화 활성슬러지 내에서의 클린다마이신 항생제 생분해)

  • Cho, Yun-Chul;Kim, Lee-Hyung;Kim, Sung-Pyo
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.129-137
    • /
    • 2011
  • The aim of this study is to evaluate the biodegradability of the micro-contaminant, clindamycin antibiotic, under nitrifying activated sludge (AS) condition. Based on the short-term clindamycin degradation batch test at an environmentally relevant concentration (10 ppb), clindamycin disappearance half-life ($t_{0.5}$) was estimated to be 9.1hrs under nitrification condition. However, biodegradation was slower (26.1 hrs) when nitrification was inhibited. Also, one clindamycin metabolite was detected under nitrification condition, but not under inhibited nitrification condition. Based on the mass spectra, the metabolite is suspected to be clindamycin-sulfoxide (m/z 441), which is known to have antimicrobial activity. The metabolite was not degraded during the long term batch study, suggesting that under the conditions tested, biodegradation of clindamycin in activated sludge systems is ineffective.

High-yield Production of Functional Human Lactoferrin in Transgenic Cell Cultures of Siberian Ginseng(Acanthopanax senticosus)

  • Jo, Seung-Hyun;Kwon, Suk-Yoon;Park, Doo-Sang;Yang, Kyoung-Sil;Kim, Jae-Whune;Lee, Ki-Teak;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.442-448
    • /
    • 2006
  • Human lactoferrin (hLf) is an iron-binding glycoprotein that has been considered to play many biological roles in the human, including the stimulation of the immune system, antimicrobial and anti-inflammatory effects, and regulation of iron absorption. We generated transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing a functional hLf protein using the signal peptide sequence from the endoplasmic reticulum and driven by an oxidative stress-inducible SWPA2 promoter which is highly expressed in plant cell cultures. The production of hLf increased proportionally to cell growth and showed a maximal level (up to 3.6% of total soluble protein) at the stationary phase in suspension cultures. Full-length hLf protein was identified by immunoblot analysis in transgenic cell cultures of Siberian ginseng. Recombinant hLf (rhLf) was purified from suspension cells of Siberian ginseng by ammonium sulfate precipitation, cation-exchange and gel filtration chromatography. N-terminal sequences of rhLf were identical to native hLf (nhLf). The overall monosaccharide composition of rhLf showed the presence of plant specific xylose while sialic acid is absent. Antibacterial activity of purified rhLf was higher than that of nhLf. Taken together, we anticipate that medicinal Siberian ginseng cultured cells, as demonstrated by this study, will be a biotechnologically useful source for commercial production of functional hLf not requiring further purification.

Development of Natural Dishwashing Liquid containing the Curcuma Longa L., Morus alba and Ecklonia cava extracts (강황, 상백피 및 감태 추출 혼합물을 첨가한 천연 주방세제 개발)

  • Jung, Ji-Yeon;Kim, Koth-Bong-Woo-Ri;Song, Eu-Jin;Lee, Chung-Jo;Kwak, Ji-Hee;Choi, Moon-Kyoung;Kim, Min-Jee;Ahn, Dong-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.157-167
    • /
    • 2010
  • This study was conducted to investigate the quality characteristics of the natural dishwashing liquid added with the mixture extracts of Curcuma Longa L. (CL), Morus alba (MA) and Ecklonia cava (EC) at various concentrations. The pH and lightness of the natural dishwashing liquid were reduced by adding the mixture extracts, while the turbidity was increased. The natural dish washing liquid added with mixture extracts was shown to display strong antimicrobial activities against L. monocytogenes compared to that of control. Also, it revealed that antioxidant activity was increased depending on concentrations. However, natural dishwashing liquid added with mixture extracts showed the low detergency efficiency. In sensory evaluation, the natural dishwashing liquid containing CL 0.5%, MA 0.25% and EC 0.25% was preferred than the control and it showed negative result in skin patch test. These results suggest that the addition of CL 0.5%, MA 0.25% and EC 0.25% positively improved the qualities characteristics in the natural dish washing liquid.

In Vitro Activities of Antimicrobials Against Brucella abortus Isolates from Cattle in Korea During 1998-2006

  • Heo, Eun-Jeong;Kang, Sung-Il;Kim, Jong-Wan;Her, Moon;Cho, Dong-Hee;Cho, Yun-Sang;Hwang, In-Yeong;Moon, Jin-San;Wee, Sung-Hwan;Jung, Suk-Chan;Nam, Hyang-Mi
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.567-570
    • /
    • 2012
  • In vitro activities of 13 antibiotics were assessed against 85 Brucella abortus isolates from naturally infected cattle in the Republic of Korea during 1998-2006, using broth microdilution test. Tetracyclines showed the most excellent activity against B. abortus, displaying MIC values of 0.5 ${\mu}g/ml$ or below. In particular, minocycline showed the lowest $MIC_{50/90}$ values (0.125/0.125 ${\mu}g/ml$) in this study. Among four fluoroquinolones tested, ciprofloxacin ($MIC_{50/90}$, 0.5/1 ${\mu}g/ml$) and norfloxacin ($MIC_{50/90}$, 8/8 ${\mu}g/ml$) had the most and the least activities, respectively. Gentamicin ($MIC_{50/90}$, 1/1 ${\mu}g/ml$) was more effective than streptomycin, erythromycin, rifampin, and chloramphenicol ($MIC_{50/90}$, 2/2 ${\mu}g/ml$).

In Vitro and In Vivo Anti-Tobacco Mosaic Virus Activities of Essential Oils and Individual Compounds

  • Lu, Min;Han, Zhiqiang;Xu, Yun;Yao, Lei
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.771-778
    • /
    • 2013
  • Essential oils are increasingly of interest for use as novel drugs acting as antimicrobial and antiviral agents. In the present study, we report the in vitro antiviral activities of 29 essential oils, extracted from Chinese indigenous aromatic plants, against the tobacco mosaic virus (TMV). Of these essential oils, those oils from ginger, lemon, tea tree, tangerine peel, artemisia, and lemongrass effected a more than 50% inhibition of TMV at 100 ${\mu}g/ml$. In addition, the mode of antiviral action of the active essential oils was also determined. Essential oils isolated from artemisia and lemongrass possessed potent inactivation and curative effects in vivo and had a directly passivating effect on TMV infection in a dose-dependent manner. However, all other active essential oils exhibited a moderate protective effect in vivo. The chemical constitutions of the essential oils from ginger, lemon, tea tree, tangerine peel, artemisia, and lemongrass were identified by gas chromatography and gas chromatography-mass spectrometry. The major components of these essential oils were ${\alpha}$-zingiberene (35.21%), limonene (76.25%), terpinen-4-ol (41.20%), limonene (80.95%), 1,8-cineole (27.45%), and terpinolene (10.67%). The curative effects of 10 individual compounds from the active essential oils on TMV infection were also examined in vivo. The compounds from citronellal, limonene, 1,8-cineole, and ${\alpha}$-zingiberene effected a more than 40% inhibition rate for TMV infection, and the other compounds demonstrated moderate activities at 320 ${\mu}g/ml$ in vivo. There results indicate that the essential oils isolated from artemisia and lemongrass, and the individual compound citronellal, have the potential to be used as an effective alternative for the treatment of tobacco plants infected with TMV under greenhouse conditions.

In Vitro Characterization of Lactic Acid Bacteria from Indonesian Kefir Grains as Probiotics with Cholesterol-Lowering Effect

  • Yusuf, Dandy;Nuraida, Lilis;Dewanti-Hariyadi, Ratih;Hunaefi, Dase
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.726-732
    • /
    • 2020
  • Indonesian kefir grains are potential sources of lactic acid bacteria (LAB) that may act as probiotics with specific functional properties. In this study we explored the potential of the probiotic and cholesterol-lowering effect of LAB isolated from Indonesian kefir grains obtained from Bogor, Bandung, Jakarta, and Yogyakarta. The results revealed that 10 isolates showed considerable survivability at low pH and bile salt with total cell reduction of ~3 log colony-forming units per milliliter after exposure to pH 2.5 and 0.5% (w/v) bile salt for 1 and 3 h, respectively. All strains exhibited strong antimicrobial activities against pathogenic bacteria and were sensitive to a wide spectrum of antibiotics but exhibited weak bile salt hydrolase activity. Identification based on 16S RNA suggested that nine isolates were Lactobacillus kefiri and one was Lactobacillus rhamnosus. The ability of the isolates to reduce cholesterol from the media varied, ranging from 22.08% to 68.75% with the highest reduction shown by L. kefiri JK17. The ability to remove cholesterol from the media decreased greatly in resting and dead cells, ranging from 14.58% to 22.08% in resting cells and from 7.89% to 18.17% in dead cells. It can be concluded that Indonesian kefir grains contain LAB potentially acting as probiotics capable of reducing cholesterol. The cholesterol-lowering effect especially occurs when the cells are metabolically active.

Activation and immobilization of phenol-degrading bacteria on oil palm residues for enhancing phenols degradation in treated palm oil mill effluent

  • Tosu, Panida;Luepromchai, Ekawan;Suttinun, Oramas
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.141-148
    • /
    • 2015
  • The presence of phenols in treated palm oil mill effluent (POME) is an environmental concern due to their phytotoxicity and antimicrobial activity. In this study, phenol-degrading bacteria, Methylobacterium sp. NP3 and Acinetobacter sp. PK1 were immobilized on oil palm empty fruit bunches (EFBs) for removal of phenols in the treated POME. The bacterial exopolysaccharides (EPS) were responsible for cell adhesion to the EFBs during the immobilization process. These immobilized bacteria could effectively remove up to 5,000 mg/L phenol in a carbon free mineral medium (CFMM) with a greater degradation efficiency and rate than that with suspended bacteria. To increase the efficiency of the immobilized bacteria, three approaches, namely activation, acclimation, and combined activation and acclimation were applied. The most convenient and efficient strategy was found when the immobilized bacteria were activated in a CFMM containing phenol for 24 h before biotreatment of the treated POME. These activated immobilized bacteria were able to remove about 63.4% of 33 mg/L phenols in the treated POME, while non-activated and/or acclimated immobilized bacteria could degrade only 35.0%. The activated immobilized bacteria could be effectively reused for at least ten application cycles and stored for 4 weeks at $4^{\circ}C$ with the similar activities. In addition, the utilization of the abundant EFBs gives value-added to the palm oil mill wastes and is environmentally friendly thus making it is attractive for practical application.

Enhancement of Bacteriocin Production by Bacillus subtilis cx1 in the Presence of Bacillus subtilis ATCC6633 (Bacillus subtilis ATCC6633이 Bacillus subtilis cx1의 박테리오신 생산에 미치는 유도효과)

  • Chang Mi;Chang Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.221-227
    • /
    • 2006
  • BSCX1 was an antimicrobial peptide produced by Bacillus subtilis cx1. Attempts were made to determine the location of inducing factor in the bacteriocin-sensitive cell affecting bacteriocin BSCX1 production. Mixed culture of the bacteriocin producer strain B. subtilis cx1 and its sensitive strain B. subtilis ATCC6633, increased production of bacteriocin BSCX1. The result suggested the presence of a bacteriocin inducing factor in the sensitive strain. The inducing factor was localized in the cell debris and intracellular fraction of B. subtilis ATCC6633. Bacteriocin BSCX1 inducing factor was found to be highly stable in the pH range 2.5-9.5, but inactivated within 3h over $50^{\circ}C$, and treatment with proteinase K destroyed its inducing activity, this result suggested that the inducing factor should be a proteinaceous nature.

Studies on the Yellow Pigment Produced by Monascus sp. CS-2 (Part 3) Safety Test of Yellow Pigment (Monascus sp. CS-2가 생산하는 황색색소에 관한 연구 (제3보) 황색색소의 안전성 시험)

  • Kim, Hyun-Soo;Jang, Wook;Son, Chung-Hong;Bae, Jong-Chan;Yoo, Ju-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.3
    • /
    • pp.117-121
    • /
    • 1981
  • Safety of yellow pigment produced by Monascus sp. CS-2 was evaluated. Acute oral toxicity, pyrogen test, and histamine test, as well as antimicrobial activity were determined. The results obtained were; LD oral in mice was 132.5 mg/20 g, pyrogen test in rabbit was 5 mg/kg, and histamine test in cat was 10 mg/kg. Also the pigment was particularly sensitive to Bacillus subtilis (ATCC 6633), Sarcina lutea (ATCC 9341) and Staphylococcus aureus (ATCC 6538 P), whereas not sensitive to Pseudomonas pyosyanea (ACTC 10490), Bacillus var. mycoides (ATCC 11778), Bordetella bronchiseptica (ATCC 4617) and Staphylococcus epidermidis(ATCC 12228).

  • PDF

Inhibition of MMP-2 and MMP-9 activities by solvent-partitioned Sargassum horneri extracts

  • Karadeniz, Fatih;Lee, Seul-Gi;Oh, Jung Hwan;Kim, Jung-Ae;Kong, Chang-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.6
    • /
    • pp.16.1-16.7
    • /
    • 2018
  • Background: Matrix metalloproteinases (MMPs) are linked with several complications such as metastasis of cancer progression, oxidative stress, and hepatic fibrosis. Brown seaweeds are being extensively studied for their bioactive molecule content against cancer progression. In this context, Sargassum horneri was reported to possess various bioactivities including antiviral, antimicrobial, and anti-inflammatory partly due to its phenolic compound content. Methods: In this study, potential of S. horneri was evaluated through anti-MMP effect in HT1080 fibrosarcoma cells. S. horneri crude extract was fractionated with organic solvents, namely, water ($H_2O$), n-buthanol (n-BuOH), 85% aqueous methanol (85% aq. MeOH), and n-hexane. The non-toxicity of fraction samples (Sargassum horneri solvent-partitioned extracts (SHEs)) was confirmed by cell-viability assay. SHEs were tested for their ability to inhibit MMP enzymatic activity through gelatin digestion evaluation and cell migration assay. Expressions of MMP-2 and MMP-9 and tissue inhibitors of MMP (TIMPs) were evaluated by reverse transcription and Western blotting. Results: All fractions inhibited the enzymatic activities of MMP-2 and MMP-9 according to gelatin zymography. Except $H_2O$ fraction, fractions hindered the cell migration significantly. All tested fractions suppressed both mRNA and protein levels of MMP-2, MMP-9, TIMP-1, and TIMP-2. Conclusion: Overall, current results suggested that S. horneri has potential to be a good source for anti-MMP agents, and further investigations are underway for better understanding of the action mechanism and isolation and elucidation of the bioactive molecules.