• 제목/요약/키워드: antioxidant activity

Search Result 7,626, Processing Time 0.034 seconds

Quality Characteristics of Dried Noodle Prepared with Strawberry Powder (딸기분말을 첨가한 국수의 품질 특성)

  • Park, Bock-Hee;Koh, Kyeong-Mi;Cha, Min-hye;Kim, Ok-Joo;Jeon, Eun-Raye
    • Journal of the Korean Society of Food Culture
    • /
    • v.31 no.1
    • /
    • pp.88-95
    • /
    • 2016
  • This study evaluated the quality characteristics of dried noodles prepared with strawberry powder in order to determine the most preferred noodle recipe for children's school meals. The proximate composition of strawberry powder used was as follows: moisture, 3.39%; crude protein, 1.53%; crude lipid, 0.97%; crude ash, 0.82%; and carbohydrates, 93.29%. When viscosity of the composite strawberry powder-wheat flours was measured by amylograph. Gelatinization point, maximum viscosity, viscosity at $95^{\circ}C$ and viscosity at $95^{\circ}C$ after 15 min decreased as the level of strawberry powder increased. As the level of strawberry powder increased, both L and b color values decreased, whereas a value increased. Weight, water absorption and volume of cooked noodles decreased, whereas turbidity of soup increased. For textural properties, addition of strawberry powder to cooked noodles reduced hardness, chewiness and brittleness. Overall preference according to the results of the sensory evaluation, noodles added with 6% strawberry powder were the most preferred. According to the results, the addition of strawberry powder can positively affect the overall sensory evaluation of dried noodles, and 6% is the optimal level for addition.

Electron Donating Ability and Contents of Phenolic Compounds, Tocopherols and Carotenoids in Waxy Corn (Zea mays L.) (찰옥수수의 전자공여작용과 페놀성화합물, Tocopherols 및 Carotenoids의 함량)

  • Seo, Young-Ho;Kim, In-Jong;Yie, An-Soo;Min, Hwang-Kee
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.581-585
    • /
    • 1999
  • The antioxidative activity measured by electron donating ability was investigated for the breeding of the highest antioxidative waxy corn (Zea mays L.) and the research for the most effective antioxidant in waxy corn. The electron donating ability was $15.5{\sim}65.0%$. The contents of phenolic compounds and tocopherols and the absorbance at 450 nm were $102.3{\sim}323.5\;{\mu}g/mL$, $15.6{\sim}144.2\;{\mu}g/mL$ and $0.047{\sim}0.206$, respectively. The mean values of electron donating ability and contents of phenolic compounds and tocopherols of four black waxy corn were comparatively high, that is, 48.7%, $267.0\;{\mu}g/mL$ and $87.0\;{\mu}g/mL$, respectively. The electron donating ability was significantly correlated with the level of phenolic compounds and tocopherols but not with the content of carotenoids.

  • PDF

Expression of Recombinant Bovine Lactoferrin and Lactoferrin N-lobe in Rhodococcus erythropolis at Low Temperature (저온에서 Rhodococcus erythropolis 균주로부터 재조합 젖소 Lactoferrin과 Lactoferrin N-lobe의 발현)

  • Kim Woan-Sub;Kim Gur-Yoo;Kwon Ill-Kyung;Goh Juhn-Su
    • Food Science of Animal Resources
    • /
    • v.25 no.2
    • /
    • pp.232-237
    • /
    • 2005
  • Lactoferrin is a member of the transferrin family of iron-binding glycoproteins. It is originally found in milk. In addition to its antibacterial and antiviral activities, lactoferrin has many other biological functions include anti-inflammatory properties, antitumor, cell growth-promoting activity as well as antioxidant effect In the present study, we report the production of recombinant bovine lactoferrin and lactoferrin N-lobe in the Rhodococcus erythropolis (R erythropolis) using pTip vector. The expression level was investigated in various range of temperature, and we could successfully expressed the bovine lactoferrin and lactoferrin N-lobe in R erythropolis at low temperature. The recombinant proteins were purified by Nickel-Nitrolotriacetic acid (Ni-NTA). The purified proteins were confirmed by SDS-PAGE and Western blot, which indicating that the recombinant proteins have a molecular weight of 80kDa and 43kDa for bovine lactoferrin and lactoferrin N-lobe, respectively.

Protective role of paeoniflorin from hydrogen peroxide-mediated oxidative damage in C6 glial cells

  • Lee, Ah Young;Nam, Mi Na;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.137-145
    • /
    • 2020
  • Oxidative stress is one of the pathogenic mechanisms of various neurodegenerative diseases, such as Alzheimer's disease. Neuroglia, the most abundant cells in the brain, is thought to play an important role in the antioxidant defense system and neuronal metabolic support against neurotoxicity and oxidative stress. We investigated the protective effect of paeoniflorin (PF) against oxidative stress in C6 glial cells. Exposure of C6 glial cells to hydrogen peroxide (H2O2, 500 μM) significantly decreased cell viability and increased amounts of lactate dehydrogenase (LDH) release, indicating H2O2-induced cellular damage. However, treatment with PF significantly attenuated H2O2-induced cell death as shown by increased cell survival and decreased LDH release. The H2O2-stimulated reactive oxygen species production was also suppressed, and it may be associated with improvement of superoxide dismutase activity by treatment with PF. In addition, an increase in ratio of Bcl-2/Bax protein expression was observed after treatment with PF. In particular, the down-stream of the apoptotic signaling pathway was inhibited in the presence of PF, mostly by reduction of cleaved-poly ADP ribose polymerase, cleaved caspase-3, and -9 protein expression. Furthermore, H2O2-induced phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 was attenuated by treatment with PF. Taken together, neuroprotective effect of PF against oxidative stress probably result from the regulation of apoptotic pathway in C6 glial cells. In conclusion, our findings suggest that PF may be a potent therapeutic agent for neurodegenerative disorders.

Moringa oleifera Prolongs Lifespan via DAF-16/FOXO Transcriptional Factor in Caenorhabditis elegans

  • Im, Jun Sang;Lee, Ha Na;Oh, Jong Woo;Yoon, Young Jin;Park, Jin Suck;Park, Ji Won;Kim, Jung Hoon;Kim, Yong Sung;Cha, Dong Seok;Jeon, Hoon
    • Natural Product Sciences
    • /
    • v.22 no.3
    • /
    • pp.201-208
    • /
    • 2016
  • Here in this study, we investigated the lifespan-extending effect and underlying mechanism of methanolic extract of Moringa olelifa leaves (MML) using Caenorhabditis elegans (C. elegans) model system. To define the longevity properties of MML we conducted lifespan assay and MML showed significant increase in lifespan under normal culture condition. In addition, MML elevated stress tolerance of C. elegans to endure against thermal, oxidative and osmotic stress conditions. Our data also revealed that increased activities of antioxidant enzymes and expressions of stress resistance proteins were attributed to MML-mediated enhanced stress resistance. We further investigated the involvement of MML on the aging-related factors such as growth, food intake, fertility, and motility. Interestingly, MML significantly reduced growth and egg-laying, suggesting these factors were closely linked with MML-mediated longevity. We also observed the movement of aged worms to estimate the effects of MML on the health span. Herein, MML efficiently elevated motility of aged worms, indicating MML may affect health span as well as lifespan. Our genetic analysis using knockout mutants showed that lifespan-extension activity of MML was interconnected with several genes such as skn-1, sir-2.1, daf-2, age-1 and daf-16. Based on these results, we could conclude that MML prolongs the lifespan of worms via activation of SKN-1 and SIR-2.1 and inhibition of insulin/IGF pathway, followed by DAF-16 activation.

Neuroprotective Effect of the Water-insoluble fraction of Root Barks of Dictamnus dasycarpus 70% Ethanolic Extract on Glutamate-Induced Oxidative Damage in Mouse Hippocampal HT22 Cells (백선피 70% 에탄올 추출물의 비수용성 분획물의 뇌세포 보호 효과)

  • Choi, Hyun-Gyu;Lee, Dong-Sung;Li, Bin;Jun, Ki-Yong;Jeong, Gil-Saeng;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • Oxidative stress or accumulation of reactive oxygen species (ROS) leads neuronal cellular death and dysfunction, and it contributes to neuronal degenerative disease such as Alzheimer's disease, Parkinson's disease and stroke. Glutamate is one of the major excitatory neurotransmitter in the central nervous system (CNS). Glutamate contributes to fast synaptic transmission, neuronal plasticity, outgrowth and survival, behavior, learning and memory. In spite of these physiological functions, high concentration of glutamate causes neuronal cell damage, acute insults and chronic neuronal neurodegenerative diseases. Heme oxygenase-1 (HO-1) enzyme plays an important role of cellular antioxidant system against oxidant injury. NNMBS020, the water-insoluble fraction of the 70% EtOH extract of root barks of Dictamnus dasycarpus, showed dominant neuroprotective effects on glutamate-induced neurotoxicity in mouse hippocampal HT22 cells by induced the expression of HO-1 and increased HO activity. In mouse hippocampal HT22 cells, NNMBS020 makes the nuclear accumulation of Nrf2 and stimulates extracellular signal-regulated kinase (ERK) pathway. The ERK MAPK pathway inhibitor significantly reduced NNMBS020-induced HO-1 expression, whereas the JNK and p38 inhibitors did not. In conclusion, the water-insoluble fraction of the 70% EtOH extract of root barks of D. dasycarpus (NNMBS020) significantly protect glutamate-induced oxidative damage by induction of HO-1 via Nrf2 and ERK pathway in mouse hippocampal HT22 cells.

Inhibition Effect of Zizania latifolia on Apoptosis Induced by $H_2O_2$ in Neuro2A Cell ($H_2O_2$로 유발된 Neuro2A 신경세포고사에 대한 줄풀의 억제 효과)

  • Park, Won-Hyung;Cha, Yun-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.1062-1067
    • /
    • 2005
  • The purpose of this study was to examine the inhibition effect of Zizania latifolia that has been used heart disease, Diabetes Mellitus and Skin disease for a long time on apoptosis induced by $H_2O_2$ in Neuro2A cell. Neuro2A cells were cultivated in RPMI(GibcoBRL) with $5\%$, FBS and treated with $H_2O_2$, and Zizania latifolia. We measured the cell viability and analyzed DNA fragmentation. Activity of PARP, Cytochrome C, caspase-9, caspase-3, p53, p21, Bax and Bcl-2 in the cell was examined by using western blot. The cell viability in Zizania latifolia treatment (60ug/ml<) decreased significantly compared with that of none treatment. (p<0.001) Zizania latifolia increased cell viability about twice as much as that being injury by $H_2O_2$. (Zizania Latifolia 20ug/ml, $H_2O_2$ 200uM, P<0.001) DNA fragmentation developed by $H_2O_2$, but was not developed in Zizania latifolia treatment. PARP, Cytochrome C, caspase-9 and caspase-3 activated all by $H_2O_2$ but were not activated in Zizania latifolia treatment.. P53, P2l and Bu activated by $H_2O_2$, and Bcl-2 got into inactivation. But the opposite results appeared in Zizania latifolia treatment. In conclusion, these results suggest that Zizania latifolia inhibit the development of DNA fragmentation and apoptosis by $H_2O_2$ and the antioxidant action of Zizania latifolia is effective. More researches about effect of Zizania latifolia are considered to need.

Antioxidative Effects of Scutellariae Radix Aaquaacupuncture Solution on Lipid Peroxidation Induced by Free Radicals (자유기에 의한 지질과산화 반응에 대한 황금 약침액의 항산화 효능)

  • Kim Sung-Il;Moon Jin-Young;Kim Kap-Sung;Kim Doo-Hie;Nam Kyung-Soo;Lim Jong-Kook
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.1 no.1
    • /
    • pp.48-54
    • /
    • 1997
  • Scutellariae radix, has been used as a natural drug for fever, inflammation, cataract, and liver disease in traditional medicine. This study was performed in order to investigate the antioxidative effects of Scutellariae radix aqua-acupuncture solution (SRAS) on lipid peroxidation by free radicals. Lipid peroxidation levels were determined by TBA method during the autoxidation of linoleic acid. In this linoleic acid autoxidation system, SRAS markedly exhibited antioxidant activity, which inhibited 89% of linoleic acid peroxidation. SRAS showed scavenging effects on ${\alpha},{\alpha}-diphenyl-{\beta}-picrylhydrazyl$(DPPH) radical, inhibited superoxide generation in xanthine-xathine oxidase system, and also inhibited lipid peroxidation of rat liver tissue by hydroxyl radical derived from $H_2O_2-FE^{+2}$ system. These effects were similar to those of $dl-{\alpha}-tocopherol$, BHA and BHT. In addition, SRAS protected the cell death induced by ter-butyl hydroperoxide (t-BHP) and significantly increased cell viability in the normal rat liver cell (Ac2F). On the basis of these results, it is suggested that SRAS might play a protective role in lipid peroxidation by free radicals.

  • PDF

Anti-aging Effect and Gene Expression Profiling of Aged Rats Treated with G. bimaculatus Extract

  • Ahn, Mi Young;Hwang, Jae Sam;Yun, Eun Young;Kim, Min-Ji;Park, Kun-Koo
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.173-180
    • /
    • 2015
  • Extract from Gryllus bimaculatus crickets inhibits oxidation at the DNA level, with reduced production of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Microarray analyses were performed with a rat 28K cDNA clone set array to identify the gene expression profiles of aged (10 months old) Wistar Kyoto rats treated for one month with 100 mg/kg G. bimaculatus ethanol extract to assess the effects. The extract produced a meaningful anti-edema effect, evident by the inhibition of creatinine phosphokinase activity. The weights of abdominal and ovarian adipose tissues were reduced and the proportion of unsaturated fatty acids in adipose tissues was increased in an extract dose-dependent manner. Compared with untreated control rats, rats treated with the extract displayed the upregulation of 1053 genes including Fas (tumor necrosis factor receptor superfamily, member 6), Amigo3 (adhesion molecule with an immunoglobulin-like domain), Reticulon 4, 3-hydroxy-3-methylglutaryl-coenzyme (Hmgcr; a reductase), related anti-fatigue (enzyme metabolism), and Rtn antioxidant, and the downregulation of 73 genes including Ugt2b (UDP glycosyltransferase 2 family), Early growth response 1, and Glycoprotein m6a. Data suggest that G. bimaculatus extract may have value in lessening the effects of aging, resulting in a differential gene expression pattern indicative of a marked stress response and lower expression of metabolic and biosynthetic genes.

Protective Effect of Vitis amurensis Stems and Leaves Extract on Hydrogen Peroxide-induced Oxidative Neuronal Cell Damage in Cultured Neurons (과산화수소수로 유도된 배양 뇌신경세포손상에 대한 왕머루 잎과 줄기 추출물의 보호효과)

  • Kim, Joo-Youn;Ju, Hyun-Soo;Ban, Ju-Yeon;Song, Kyung-Sik;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.1
    • /
    • pp.68-74
    • /
    • 2009
  • Vitis amurensis (VA; Vitaceae) has long been used in oriental herbal medicine. It has been reported that roots and seeds of VA have anti-inflammatory and antioxidant effects. In the present study, the protective effect of ethanol extract from stems and leaves of VA on hydrogen peroxide (${H_2}{O_2}$) (100 ${\mu}M$)-induced neuronal cell damage was examined in primary cultured rat cortical neurons. VA (10-100 ${\mu}g$/ml) concentration-dependently inhibited ${H_2}{O_2}$-induced apoptotic neuronal cell death measured by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. VA inhibited ${H_2}{O_2}$-induced elevation of intracellular $Ca^{2+}$ concentration (${[Ca^{2+}]}_i$) and generation of reactive oxygen species (ROS), which were measured by fluorescent dyes. Pretreatment of VA also prevented glutamate release into medium induced by 100 ${\mu}M$ ${H_2}{O_2}$, which was measured by HPLC. These results suggest that VA showed a neuroprotective effect on ${H_2}{O_2}$-induced neuronal cell death by interfering with ${H_2}{O_2}$-induced elevation of ${[Ca^{2+}]}_i$, glutamate release, and ROS generation. This has a significant meaning of finding a new pharmacological activity of stems and leaves of VA in the CNS.