• Title/Summary/Keyword: antioxidative defense system

Search Result 71, Processing Time 0.022 seconds

The Effects of Mulberry Fruit on the Antioxidative Defense Systems and Oxidative Stress in the Erythrocytes of Streptozotocin-Induced Diabetic Rats

  • Hong, Jung-Hee;Ahn, Jung-Mo;Park, Sang-Won;Rhee, Soon-Jae
    • Nutritional Sciences
    • /
    • v.7 no.3
    • /
    • pp.127-132
    • /
    • 2004
  • The current study examined the effects of mulberry fruit on the antioxidative defense systems and oxidative stress in the erythrocytes of diabetes-induced rats. Sprague-Dawley male rats were randomly assigned to one normal and three streptozotocin (STZ)-induced diabetic groups. 1be diabetic groups were fed a mulberry fruit-free diet (DM-group), 0.3% mulberry fruit diet (DM-F group) or 0.6% mulberry fruit diet (DM-2F group). Diabetes was induced with STZ after three weeks of the experimental diets. 1be rats were sacrificed 9 days later for examination of the antioxidative defense systems and oxidative stress in the erythrocytes. Means of cy-3-Ο-glucopyranoside, cy-3-Ο-rutinoside, rutin, isoquercitrin, quercetin, morin and dehydroquercetin contents were 230.45, 131.5, 142.5, 10.3, 5.8, 1.6 and 3.83mg per l00g dry weight, respectively, in the mulberry fruit. Mulberry fruit strengthened the antioxidative defense systems through increased activity of the antioxidant enzymes, such as glutathione peroxidase (GSH-px) and catalase (CAT), in the erythrocytes of the diabetes-induced rats. Accrdingly, mulberry fruit was found to reduce the accumulation of thiobarbituric acid reactive substance (WARS). Therefore, mulberry fruit was found to be excellent for strengthening the antioxidative defense system and reducing damaging oxidative substances in the erythrocytes of the diabetes-induced rats.

Effect of Sachungwhan and its components on acetaminophen induced hepatoxicity in rats (사청환(瀉靑丸)과 그 구성약물군(構成藥物群)이 acetaminophen으로 유도된 백서의 간독성에 미치는 영향(影響))

  • Lee Jae-Eun;Park Sun-Dong
    • Herbal Formula Science
    • /
    • v.11 no.1
    • /
    • pp.129-149
    • /
    • 2003
  • Liver is an important target of the toxicity of drugs, xenobiotics and oxidative stress. Acetaminophen pverdose causes acute liver injury in both humans and animals. This study was performed to observe the effect of sachunwhan and its component groups on recovery of hepatoxicity in acetaminophen treated rats. The experimental group was divided into 4 groups: sachungwhan(SC), samultang group(SC-1: 當歸, 川芎), chungyul group(SC-2: 龍膽草, 大黃, 梔子), and haepyo group(SC-3:羌活, 防風). Under the same condition Normal group was fed basal diet and water; Control group was injected acetaminophen and fed basal diet for 2 weeks; Experimental groups were injected acetaminophen and fed each extracts for 2 weeks respectively. The results were obtained as follows: 1. In the study on antioxidative defense system in vivo, SC reduced the amount of lipid peroxide in both serum and liver and showed activity on antioxidative enzymes such as catalase, glutathion. Other groups had effect only on glutathion. 2. In the study on hepatotoxicity(GOT, GPT, ${\gamma}$-GTP, ALP, LDH, Bilirubin), SC had a significant effect on recovery of hepatoxicity in acetaminophen treated rats. Other groups had no effect except SC-1 having effect on ${\gamma}$-GTP. As results shown, only Sachungwhan(SC) has significant effects on recovery of hepatoxicity and antioxidative defense system in vivo. These results suggest that Sachungwhan(SC) made antioxidative defense system active and it seemed to be very important to its effect on recovery of hepatoxicity. In the other hand, Component groups had no effect on recoverv of hepatoxicity and antioxidative defense system in vivo. This was thought that component drugs' cooperative synergy effect would be important to Sachungwhan(SC)'s effects mentioned in this paper.

  • PDF

Effect of ethanol extracts from red pepper seeds on antioxidative defense system and oxidative stress in rats fed high-fat.high-cholesterol diet

  • Song, Won-Young;Ku, Kyung-Hyung;Choi, Jeong-Hwa
    • Nutrition Research and Practice
    • /
    • v.4 no.1
    • /
    • pp.11-15
    • /
    • 2010
  • The purpose of the present study was to investigate the effect of ethanol extracts from red pepper seeds on the antioxidative defense system and oxidative stress in rats fed a high fat high cholesterol diet. Rats were divided into four experimental groups which were composed of high fat high cholesterol diet group (HF), high fat high cholesterol diet with 0.1% ethanol extracts from red pepper seeds supplemented group (HEA), high fat high cholesterol diet with 0.2% ethanol extracts from red pepper seeds supplemented group (HEB) and high fat high cholesterol diet with 0.5% ethanol extracts from red pepper seeds supplemented group (HEC). Supplementation of ethanol extracts from red pepper seeds groups (HEA, HEB and HEC) resulted in significantly increased activities of hepatic glutathione peroxidase and catalase. Hepatic superoxide radical contents in microsome and mitochondria were significantly reduced in the groups supplemented with red pepper seeds ethanol extracts. Hepatic hydrogen peroxide content in the mitochondria was reduced in ethanol extracts from red pepper seeds supplemented groups. TBARS values in the liver were reduced in red pepper seeds ethanol extracts supplemented groups. Especially, HEB and HEC groups were significantly decreased compared to the HF group. Hepatic carbonyl values were significantly reduced in mitochondria in these supplemented groups. These results suggest that red pepper seeds ethanol extracts may reduce oxidative damage, by activation of antioxidative defense system in rats fed high fat high cholesterol diets.

Effects of $\gamma$-Irradiated Beef Feeding on Antioxidative Defense System in Experimental Hepatocarcinogenesis (실험적 간 발암모델에서 감마선 조사 쇠고기 섭취가 쥐의 항산화 방어체계에 미치는 효과)

  • 김정희;진유리;강일준;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.646-653
    • /
    • 1999
  • This study was done to investigate the effect of ${\gamma}$ irradiated beef feeding on antioxidant vitamin levels and defense enzyme activities in diethylnitrosamine(DEN) initiated rats. Weaning Sprague Dawley male rats were fed the diet containing ${\gamma}$ irradiated ground beef at the dose 0, 3, 5 kGy as a 20% of protein source for 8 weeks. One week after feeding, rats were intraperitoneally injected twice with a dose of DEN(50mg/kg BW). As a promoter, 0.05% phenobarbital was fed in drinking water from one week after DEN treatment until the end of experiment. At the end of 8th week, serum level of vitamin C, serum and hepatic levels of retinol and tocopherol were determined. In addition, activities of cytosolic glutathione peroxidase, glutathione reductase, glutathione S transferase, catalase and hepatic superoxide dismutase(SOD) were measured. By ${\gamma}$ irradiation, there was no significant effect on serum and hepatic levels of vitamin C and tocopherol except a significant decreasing effect on hepatic retinol level. There was also no significant effect on the activities of enzymes involved in antioxidative defense system, However, DEN treatment led to a significant increase in activities of glutathione reductase and glutathione S transferase while the activity of glutathione peroxidase was decreased. The activities of hepatic SOD and catalase were not changed by DEN treatment. Overall results indicate that the consumption of low dose of ${\gamma}$ irradiated beef does not affect antioxidative defense system.

  • PDF

Effects of Daesihotang and its component groups on diabetes, free radical and antioxidative defense system in alloxan induced diabetic rats (대시호탕(大柴胡湯)이 alloxan으로 유발(誘發)된 고혈당(高血糖) 백서(白鼠)에 미치는 영향(影響))

  • Park, Seon-Dong;Yun, Byeong-Guk
    • Herbal Formula Science
    • /
    • v.9 no.1
    • /
    • pp.289-317
    • /
    • 2001
  • The purpose of this study was to reseach the effect of Daesihotang and its component groups on diabetes, free radical and antioxidative defense system in alloxan-induced diabetic rats. The experimental group was divided into three groups: Daesihotang (DS), Soyangyak (DS1), Yangmyungyak (DS2). The results were obtained as follows: The level of glucose, triglyceride, total cholesterol, creatinine in serum were considerablely reduced by Daesihotang. And the level of HDL cholesterol, albumin, total protein in serum were increased by Daesihotang significantly. And the level of BUN has some decreased, but with no significancy. In the study of Daesihotang on free radical scavenging effect in vitro, it has shown that Daesihotang and its components group have significant suppressing effect on peroxidation of linoleic acid on concentration. And in other experiments as scavenging effect of DPPH radical, inhibitory effect of superoxide in xanthine-xanthine oxidase system and inhibitory effect on lipid peroxidation reaction by hydroxy radical in $H_2O_2-Fe^{2+}$ system, Daesihatang have some activity, but with no significancy. In the study of Daesihotang on antioxidative defense system in vivo, the activity of GOT and GPT in serum were significantly increased; and the amounts of lipid peroxide in serum was reduced significantly but in liver no significancy. In hepatic catalase activity, Daesihotang has showed significant effect. In the level of hepatic glutathione, Daesihotang increased the amount of glutathione significantly. And in the activity of glutathione-s-transferase, Daesihotang has decreasing effect but has no significancy. These result suggest that Daesihotang has strong effect on diabetes and it is useful to prevent diabetes, but has less effect on peroxidative damage by free radical.

  • PDF

Effects of Vitamin E on Antioxidative Defense System of Liver in Acute Cadmium-Poisoned Rats (식이 Vitamin E가 급성 카드뮴중독 흰쥐 간조직의 항산화계에 미치는 영향)

  • Kim, Kwan-Ryu;Rhee, Soon-Jae
    • Journal of Nutrition and Health
    • /
    • v.33 no.1
    • /
    • pp.33-41
    • /
    • 2000
  • The purpose of this study was to investigate the effects of vitamin E on antioxidative defense system of liver in acute cadmium poisoned rats. Sprague-Dawley male rats weighing 100$\pm$10gm were randomly assigned to one control and three cadmium injected groups. Cadmium injected groups were fed vitamin E free diet(OE-Cd group), 40mg vitamin E per kg diet(40E-Cd group) or 400 mg vitamin E per kg diet(400E-Cd group). Vitamin E level of normal group was 40mg per kg diet. Animals were injected intraperitoneally with 2.0mg Cd$^2$$\^$+//kg bw for 4 days after the rats were fed diets with three different levels of vitamin E for 2 and 4weeks. Activities of superoxide dismutase(SOD), glutathione peroxidase(GSHPx) and glutathione S-transferase(GST) were decreased in cadmium injected groups but those were significantly improved by dietary vitamin I supplementations. Vitamin E contents reduced glutathione(GSH) in the live were decreased in cadmium injected groups, but we., not significantly different among three groups with different levels of vitamin E supplementations. Contents of liver thiobarbituric acid reactive substance (TBARS) of 0E-Cd group were higher than those of 400E-Cd and 400E-Cd groups, but those were markedly alleviated according to vitamin E supplementations. These results indicate that cadmium poisoning in rats causes decreasing antioxidative defense system and increasing peroxidative damage in liver, however can be restored by vitamin E supplements. (Korean J Nutrition 33 (1) : 33-41, 2000)

  • PDF

Effect of Glucuronic Acid Derivertives Isolated from Xylan on Antioxidative Defense System in Rat White Gastrocnemius after Aerobic Exercise (Xylan으로부터 단리한 Glucuronic Acid가 유산소 운동 후 흰쥐 백근의 항산화계에 미치는 영향)

  • 김관유;이순재
    • Journal of Nutrition and Health
    • /
    • v.35 no.7
    • /
    • pp.729-736
    • /
    • 2002
  • The purpose of this study was to investigate the effects of glucuronic acid (isolated from xylan) on antioxidative defense system in rat after aerobic exercise. The glucuronic acid was isolated from xylan. Sprague-Dawley male rats weighing 150$\pm$10 g were randomly assigned to one normal group and three exercise training groups. Exercise training groups were classified to T (glucuronic acid free diet), TU (250 mg glucuronic acid/kg bw) and 2TU (500 mg glucuronic acid/kg bw) according to the level of glucuronic acid supplementation before exercise training. The experimental rats in exercise training groups (T, TU and 2TU) were exercised on glucuronic acid supplementation or rats in normal group (N) were confined in cage for 4 weeks. And rats were sacrificed with an overdose of pentobarbital injection just after running. Body weight, food intakes and food efficiency ratio (FER) were lower in the exercise training group than in the normal group. White gastrocnemius xanthine oxidase (XOD) activity in the T group was 85% greater than that of the normal group, whereas in the TU and 2TU groups it did not differ from the normal group. White gastrocnemius superoxide dismutase (SOD) activity in T group, that was decreased by 22% compared with that of N group, but those of TU and 2TU groups were increased by 38% and 42%, respectively, compared with that of T group. White gastrocnemius glutathione peroxidase (GSHpx) activity in T group, that was decreased by 42% compared with that of N group, but those of TU and 2TU groups were increased by 67% and 68%, respectively, compared with that of T group. Glutathione S-transferase (GST) activity of white gastrocnemius in N group was not significantly different from that in the T and TU groups, but 2TU group were increased by 12%. Contents of thiobarbituric acid reactive substance (TBARS) in T group was increased by 54%, compared with that of normal group but those of TU group and 2TU group were lower 44% and 36% than that of T group. In conclusion, the effects of glucuronic acids in exercise training rats would appear to reduce peroxidation of tissue as an antioxidative defense mechanism.

Effect of Seeds Extract of Paeonia Lactiflora on Antioxidative System and Lipid Peroxidation of Liver in Rats Fed High-Cholesterol Diet (작약(Paeonia Lactiflora Pall.)씨 추출물이 고콜레스테롤 식이 흰쥐 간조직의 항상화계와 지질과산화에 미치는 영향)

  • 이정민;최상원;조성희;이순재
    • Journal of Nutrition and Health
    • /
    • v.36 no.8
    • /
    • pp.793-800
    • /
    • 2003
  • This study was conducted to investigate the antioxidative effects of Paeonia lactiflora (PL) seeds on antioxidative defense system and lipid peroxidation of liver in rats fed high-cholesterol diet. Sprague-Dawley male rats weighing 100 $\pm$10g were randomly assigned into five experimental groups fed 0.5% cholesterol ; HC group which was not supplemented PL seeds extract, 0.1% methanol extract diet group (MP1 group), 0.2% methanol extract diet group (MP2 group), 0.05% ether-souble fraction diet group (EP1 group) and 0.1 % ether-souble fraction diet group (EP2 group). Experimental diets were fed ad libitum to the rats for 3 weeks. The activity of hepatic superoxide dismutase (SOD) was not significantly different among all the high cholesterol diet groups. The hepatic glutathione peroxidase (GSHpx) activity in MP2 group was increased to 27% compared to HC group. The activity of hepatic catalase (CAT) was not significantly different among the all high cholesterol diet groups. The hepatic glutathione S-transferase (GST) activity in the EP1 and EP2 groups were increased to 12% and 13%, respectively, as compared to HC group. The levels of hepatic TBARS in the MP1, MP2, EP1 and EP2 groups were reduced by 18%, 21%, 20% and 23%, respectively, as compared with HC group. The contents of lipofuscin in liver was not significantly different among all the experimental groups. The results indicated that PL seeds extract may be reduced oxidative damage by activating antioxidative defense system of hepatic in rats fed high-cholesterol diets. (Korean J Nutrition 36(8): 793∼800, 2003)

Effects of γ-Irradiated Pork Diet on Cytochrome P-450 System, Microsome Glucose 6-Phosphatase Activity and Antioxidative Defense Systems in Rat Hepatocarcinogenesis

  • Kang, Il-Jun;Kim, Jung-Hee;Chung, Cha-Kwon
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.2
    • /
    • pp.158-161
    • /
    • 2003
  • This study investigated the effects of a ${\gamma}$-irradiated pork (0-30 kGy) diet on lipid peroxidation, cytochrome P-450 content, microsomal glucose 6-phosphatase (G-6-Pase) activity and antioxidative defense systems in diethylnitrosamine (DEN)-induced rat hepatocarcinogenesis. The body weight of rats fed irradiated diets did not change significantly. Liver weight was significantly increased by the administration of DEN, but not by irradiated diets at any dose level. There were no significant effects of gamma irradiation on the content of microsomal malondialdehyde (MDA), cytochrome P-450, or on the activity of G-6-Pase. However, with DEN treatment, cytochrome P-450 content was significantly increased while microsomal G-6-Pase activity was significantly decreased. The ${\gamma}$-irradiated diet supplement did not affect serum retinol or $\alpha$-tocopherol concentrations. However, it did cause a significant decrease in hepatic retinol at 30 kGy. With DEN treatment, hepatic retinol content was even more significantly (p<0.05) decreased compared to the non-irradiated control. The enzyme activities related to antioxidative defense systems, including glutathione peroxidase (GSH-Px), glutathione reductase (GSH-Rx) and glutathione S-transferase (GST) were not affected by gamma irradiation. Those results suggest that an irradiated pork diet up to 30 kGy may not cause a health hazard in experimental animals.

Effects of Green Tea Catechin on Mixed Function Oxidase System and Antioxidative Defense System in Rat Lung Exposed to Microwave

  • Kim, Mi-Ji;Rhee, Soon-Jae
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.1
    • /
    • pp.53-57
    • /
    • 2004
  • The purpose of this study was to investigate the effects of green tea catechin on mixed function oxidase system (MFO), lipofuscin contents, carbonyl value, oxidative damage and the antioxidative defense system in lung of microwave exposed rats. Experimental groups were divided to normal group and microwave exposed group. The microwave exposed groups were subdivided into three groups: catechin free diet (MW-0C) group, 0.25% catechin (MW-0.25C) group and 0.5 % catechin (MW-0.5C) group according to the levels of dietary catechin supplementation. The rats were irradiated with microwave at frequency of 2.45 GHz for 15 min. Experimental animals were sacrificed at 6th day after microwave irradiation. The contents of cytochrome P$_{450}$ contents in MW-0C group was increased to 95% , compared with normal group. MW-0.25C and MW-0.5C groups were reduced to 16% and 31%, respectively, compared with MW-0C group. The activity of NADPH-cytochrome P$_{450}$ reductase in MW-0C group was increased to 44%, compared with normal group. MW-0.25C and MW-0.5C groups were reduced to 12% and 17%, respectively, compared with MW-0C group. The activity of superoxide dismutase (SOD) in MW-0C group was decreased to 21 %, compared with normal group. MW-0.25C and MW-0.5C group were significantly (p < 0.05) increased, compared with MW-0C group. The activity of glutathione peroxidase (GSHpx) in MW-0C group was significantly decreased, compared with normal group. MW-0.25C and MW-0.5C groups were recovered to the level of normal group. The thiobarbituric acid reactive substances (TBARS) content in MW-0C group was increased to 34 %, compared with normal group. Catechin supplementation groups were maintained the level of normal group. The levels of caybonyl value in MW-0C group was increased to 21 %, compared with normal group. MW-0.25C and MW-0.5C groups were reduced to 14% and 12%, respectively, compared with MW-0C group. The lipofuscin contents in MW-0C group were increased to 23.4 %, compared with normal group. That of MW-0.5C group was significantly reduced, compared with MW-0C group. In conclusion, MFO system was activated and the formation of oxidized protein, lipofuscin was increased and antioxidative defense system was weakened of lung tissue in microwave exposed rats, thus oxidative damage was increased. But it was rapidly recovered to normal level by green tea catechin supplementation.n.