• Title/Summary/Keyword: antisense technology

Search Result 28, Processing Time 0.024 seconds

Antisense DNAs as Targeted Genetic Medicine to Treat Cancer

  • Chochung, Yoo-S.
    • Archives of Pharmacal Research
    • /
    • v.26 no.3
    • /
    • pp.183-191
    • /
    • 2003
  • Nucleic acid therapies represent a direct genetic approach for cancer treatment. Such an approach takes advantage of mechanisms that activate genes known to confer a growth advantage to neoplastic cells. The ability to block the expression of these genes allows exploration of normal growth regulation. Progress in antisense technology has been rapid, and the traditional antisense inhibition of gene expression is now viewed on a genomic scale. This global view has led to a new vision in antisense technology, the elimination of nonspecific and undesirable side effects, and ultimately, the generation of more effective and less toxic nucleic acid medicines. Several antisense oligonucleotides are in clinical trials, are well tolerated, and are potentially active therapeutically. Antisense oligonucleotides are promising molecular medicines for treating human cancer in the near future.

Effect of ion Pairing on the Cellular Transport of Antisense Oligonucleotide

  • Song, Kyung;Kim, Kyoung-Mi;Kim, Jae-Baek;Ko, Geon-Il;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.438-442
    • /
    • 1997
  • Antisense oligonucleotide represents an interesting tool for selective inhibition of gene expression. However, their low efficiency of introduction within intact cells remains to be overcome. Antisense-$TGF{\beta}$ (25 mer) and antisense-$TGF{\beta}$ (18 mer) were used to study the cellular transport and biological function of antisense oligonucleotide in vitro. Since TGF and TNF play on important role in regulating the nitric oxide production from macrophages, the action of the above antisense oligonucleotides was easily monitored by the determination of nitrite. Poly-L-lysine, benzalkonium chloride and tetraphenylphosphonium chloride were used as polycations, which neutralize the negative charge of antisense oligonucleotide. The production of nitric oxide mediated by .gamma.-IFN in mouse peritoneal macrophage was increased by antisense-TGF.betha. in a dose-dependent manner. Antisense-$TGF{\beta}$ reduced the nitric oxide release from activated RAW 264.7 cells. Significant enhancement in the nitric oxide production was investigated by the cotreatment of poly-L-lysine with antisense-$TGF{\beta}$On the meanwhile, inhibition effect of antisense-$TGF{\beta}$ is not changed by the addition of poly-L-lysine. These results demonstrate that control of expression of $TGF{\beta}$ and TNF.alpha. gene is achieved using antisense technology and the cellular uptake of antisense oligonucleotide could be enhanced by ion-pairing.

  • PDF

Restoration of Fertility by Suppression of Male Sterility- Induced Gene Using an Antisense Construct (웅성불임 유전자의 발현억제를 이용한 임성회복)

  • Park, Young-Doo;Park, Beom-Seok;Kim, HyunUk;Jin, Yong-Moon
    • Horticultural Science & Technology
    • /
    • v.17 no.4
    • /
    • pp.473-475
    • /
    • 1999
  • This study was carried out to restore the fertility by suppression of male sterility-induced gene using an antisense construct. Tobacco (cv. Petit Havana SR1) was transformed with the binary vector containing a GBAN215-6 promoter, an antisense diphtheria toxin (DTx-A) gene (pKDA215b) and a hygromycin resistant gene. Seventy-six confirmed transgenic plants regenerated from leaf disks were designated as the $R_0$ generation and selfed to produce the $R_1$ generation. From the inheritance study, five $R_1$ lines with multiple copies of the antisense construct were selected and selfed to identify homozygosity for the antisense construct. In order to restore fertility and finally to select restore lines, five $R_2$ lines with multiple copies of the antisense construct were crossed with male sterile plants. From these crosses, three different phenotypes have been observed: completely restored, partially restored, and not restored pollens, and otherwise tobacco plants were phenotypically same as normal plants. These plants were scored for the degree of restoration and selected for further study.

  • PDF

Photo-controlled gene expression by fluorescein-labeled antisense oligonucleotides in combination with visible light irradiation

  • Ito, Atsushi;Kaneko, Tadashi;Miyamoto, Yuka;Ishii, Keiichiro;Fujita, Hitoshi;Hayashi, Tomonori;Sasaki, Masako
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.451-453
    • /
    • 2002
  • A new concept of "photo" -antisense method has been evaluated, where the inhibition of gene expression by the conventional antisense method is enhanced by photochemical binding between antisense oligonucleotides conjugated with photo-reactive compound and target mRNA or DNA. Fluorescein labeled oligodeoxyribonucleotides (F-DNA) was delivered to cell nuclei in the encapsulated form in multilamellar lecithin liposomes with neutral charge. F-DNA was previously shown to photo-bind to the complementary stranded DNA, and the delivery system using neutral liposome to be effective in normal human keratinocytes. In the present study, we used human kidney cancer G401.2/6TG.1 cell line to be advantageous in reproducible experiments. p53 was adopted as a target gene since antisense sequence information has been accumulated. The nuclear localization ofF-DNA was identified by comparing the fluorescence ofF-DNA with that of Hoechst 33258 under fluorescence microscope. After 7hr incubation to accumulate p53 protein induced by UV -B, p53 protein was quantified by Western blot. After 2hrs from F-DNA application, about 30% of cell population incorporated F-DNA in their nuclei with some morphological change possibly due to liposomal toxicity. Irradiation of visible light longer than 400nm from solar simulator at this time enhanced the inhibitory action of antisense F-DNA. The present results suggest that photo-antisense method is promising to control gene expression in time and space dependent manner. Further improvement of F-DNA delivery to cancer cells in the stability and toxicity is in progress. progress.

  • PDF

The Application of Antisense RNA Technology for Plant Secondary Metabolism (식물이차대사과정에 antisense RNA기법의 응용)

  • Kim, Yong-Kyung;Xu, Hui;Kim, Young-Seon;Kim, Eung-Hwi;Park, Sang-Un
    • Korean Journal of Agricultural Science
    • /
    • v.34 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • 유전자의 발현이 다양한 형태로 억제되는 것을 silencing이라고 한다. 유전자 발현억제 방법 중 antisense RNA는 자연 상태의 mRNA에 역상보적인 RNA 분자로서 형질전환된 세포에서 그 mRNA의 전이을 억제하는 데 이용된다. RNA분자에 대하여 상보적 염기배열을 갖는 RNA는 분자간 결합을 연결하여 RNA의 기능 발현에 억제적으로 작용한다고 생각된다. 미생물에 나타나는 유전자발현 제어기작으로서 어느 특정한 mRNA에 대하여 상보적인 RNA가 유전자 발현의 억제인자로서 작용하고 있는 예가 몇 가지 알려져 있다. 이러한 경우 antisense RNA는 mRNA 상의 전이개시영역과 상보적 배열을 하고 있고, 전이과정을 방해한다고 추정되고 있지만 작용기작의 상세한 내용은 아직 명확하지가 않다. 한편 안티센스RNA는 임의의 표적유전자에 대하여 인위적으로 제작할 수가 있기 때문에 인위적인 유전자발현제어의 한 방법으로 이용되고 있다. 특정한 유전자에 대한 antisense RNA를, 발현하는 유전자를 인위적으로 제작하여 세포내에 도입하면 표적유전자의 발현을 특이적으로 억제 제어할 수 있는 것이 기대되어, 다양한 생물체를 대상으로 하여 많은 시도가 이루어지고 있으며 몇 가지 성공적인 보고가 있다. 그 중 식물이차대사과정에 관련 유전자를 대상으로 antisense RNA 기법으로 유전자의 발현억제와 이차대사산물 생산조절에 관한 연구를 이 논문에서 조사하고 정리하였다.

  • PDF

hnRNPK-regulated PTOV1-AS1 modulates heme oxygenase-1 expression via miR-1207-5p

  • Shin, Chang Hoon;Ryu, Seongho;Kim, Hyeon Ho
    • BMB Reports
    • /
    • v.50 no.4
    • /
    • pp.220-225
    • /
    • 2017
  • Antisense transcripts were initially identified as transcriptional noise, but have since been reported to play an important role in the quality control of miRNA functions. In this report, we tested the hypothesis that heterogeneous nuclear ribonucleoprotein K (hnRNPK) regulates miRNA function via competitive endogenous RNAs, such as pseudogenes, long non-coding RNAs, and antisense transcripts. Based on analyses of RNA sequencing data, the knockdown of hnRNPK decreased the antisense PTOV1-AS1 transcript which harbors five binding sites for miR-1207-5p. We identified heme oxygenase-1 (HO-1) mRNA as a novel target of miR-1207-5p by western blotting and Ago2 immunoprecipitation. The knockdown of hnRNPK or PTOV1-AS1 suppressed HO-1 expression by increasing the enrichment of HO-1 mRNA in miR-1207-5p-mediated miRISC. Downregulation of HO-1 by a miR-1207-5p mimic or knockdown of hnRNPK and PTOV1-AS1 inhibited the proliferation and clonogenic ability of HeLa cells. Taken together, our results demonstrate that hnRNPK-regulated PTOV1-AS1 modulates HO-1 expression via miR-1207-5p.

Analysis of the Biological Function of ELDF15 Using an Antisense Recombinant Expression Vector

  • Liu, Yan;Wang, Long;Wang, Zi-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9131-9136
    • /
    • 2014
  • ELDF15, homologous with AT2 receptor-interaction protein 1 (ATIP1), may play an important role in cell differentiation, proliferation, and carcinogenesis. We aimed to understand the biological function of ELDF15 via construction and transfection of a recombinant expression vector containing antisense ELDF15. Recombinant expression vectors were successfully constructed and transfected into K562 cells. A stable transfectant, known as pXJ41-asELDF15, stably produced antisense ELDF15. Compared with K562 and K562-zeo cells, K562-pXJ41-asELDF15 cells showed inhibition of cell proliferation. RT-PCR analysis showed that the expression and protein level of ELDF15 decreased significantly in K562 cells transfected with pXJ41-asELDF15. Expression of hemoglobin increased in K562 cells transfected with pXJ41-asELDF15 by benzidine staining. increases NBT reduction activity in K562 cells transfected with pXJ41-asELDF15.Colony forming efficiency in two-layer soft agar was clearly inhibited as assessed by electron microscopy. These results suggest that ELDF15 plays a potential role in cell differentiation, proliferation and carcinogenesis.

Developing a Bioinformatics Tool for Peptide Nucleic Acid (PNA) antisense Technique Utilizing Parallel Computing System (Peptide Nucleic Acid(PNA)를 이용한 antisense 기법에 적용할 병렬 컴퓨팅용 Bioinformatics tool 개발)

  • Kim Seong-Jo;Jeon Ho-Sang;Hong Seung-Pyo;Kim Hyon-Chang;Kim Han-Jip;Min Churl-K
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.43-45
    • /
    • 2006
  • Unlike RNA interference, whose usage is limited to eukaryotic cells, Peptide Nucleic Acid (PNA) technique is applicable to both eukaryotic and prokaryotic cells. PNA has been proven to be an effective agent for blocking gene expressions and has several advantages over other antisense techniques. Here we developed a parallel computing software that provides the ideal sequences to design PNA oligos to prevent any off-target effects. We applied a new approach in our location-finding algorithm that finds a target gene from the whole genome sequence. Message Passing Interface (MPI) was used to perform parallel computing in order to reduce the calculation time. The software will help biologists design more accurate and effective antisense PNA by minimizing the chance of off-target effects.

  • PDF

Antisense Oligonucleotide Therapeutics for Cystic Fibrosis: Recent Developments and Perspectives

  • Young Jin Kim;Adrian R. Krainer
    • Molecules and Cells
    • /
    • v.46 no.1
    • /
    • pp.10-20
    • /
    • 2023
  • Antisense oligonucleotide (ASO) technology has become an attractive therapeutic modality for various diseases, including Mendelian disorders. ASOs can modulate the expression of a target gene by promoting mRNA degradation or changing pre-mRNA splicing, nonsense-mediated mRNA decay, or translation. Advances in medicinal chemistry and a deeper understanding of post-transcriptional mechanisms have led to the approval of several ASO drugs for diseases that had long lacked therapeutic options. For instance, an ASO drug called nusinersen became the first approved drug for spinal muscular atrophy, improving survival and the overall disease course. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Although Trikafta and other CFTR-modulation therapies benefit most CF patients, there is a significant unmet therapeutic need for a subset of CF patients. In this review, we introduce ASO therapies and their mechanisms of action, describe the opportunities and challenges for ASO therapeutics for CF, and discuss the current state and prospects of ASO therapies for CF.

Anatomical, Chemical, and Topochemical Characteristics of Transgemic Poplar Down-regulated with O-methyltransferase

  • Wi, Seung Gon;Lee, Kwang Ho;Park, Byung Dae;Park, Young Goo;Kim, Yoon Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.15-24
    • /
    • 2004
  • The present work was undertaken to investigate the anatomical and chemical characteristics of transgenic poplar down-regulated with antisense OMT gene. Also the distribution of lignin in transgenic poplar trees was investigated at cellular level. No visible abnormal phenotype was observed in the fibers and vessel elements of transgenic poplar. Any marked differences in the staining intensities of Wiesner and Mäule color reaction were not identified in the transgenic poplar. TEM micrographs did not show any staining intensities in the cell walls stained with KMnO4. Interestingly, the UV spectroscopy of semi-thin sections exhibited a distinct decrease of lignin absorption at 280 nm in the vessel walls, indicating transgenic poplar wood with lower amount of guaiacyl lignin in vessel elements. Chemical composition of antisense OMT poplar was almost identical to that of wild-type poplar. Klason lignin content of transgenic poplar did not show any significant difference from that of the controls. The solid state NMR spectra revealed the transgenic poplar with only slightly more syringyl lignin than the control. The present work showed that antisense OMT gene constructed in the poplar was not enough to reduce the overall content of Klason lignin, and suggested that the expression of transformation was confined to vessel walls.