• Title/Summary/Keyword: antiviral activities

Search Result 182, Processing Time 0.022 seconds

Measurement of Antiviral Activities Using Recombinant Human Cytomegalovirus

  • Song, Byung-Hak;Lee, Gyu-Cheol;Lee, Chan-Hee
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.255-259
    • /
    • 2000
  • For rapid and sensitive measurement of antiviral activities, application of a recombinant virus containing firefly luciferase gene was attempted. Recombinant human cytomegalovirus (HCMV) containing luciferase gene driven by HCMV late gene pp28 promoter (HCMV/pp28-luc) was used to test the antiviral activities of three known compounds and the result was compared with results from the conventional plaque assay for measuring the production of infectious viruses. When human fibroblast cells were infected with HCMV/pp28-luc, luciferase activity was observed at 2 days after infection and reached maximum at 6 days after infection, whereas the production of infectious virus was maximal at 4 days after infection. The antiviral activities of ganciclovir, acyclovir, and papaverine were measured in HFF cells infected with HCMV/PP28-luc and the luciferase activity was compared with the infectious virus titers. Luciferase activity decreased as the concentration of ganciclovir or papaverine increased, while there was a slight decrease in luciferase activity with acyclovir. The level of the decrease in Luciferase activity was comparable to the level of decrease in the production of infectious virus. Therefore, the antiviral assay using recombinant virus HCMV/pp28-luc resulted in sensitivity similar to the conventional plaque assay with a significant reduction in assay time.

  • PDF

Biological Activities on Phenolic Compounds of Japanese anise (Illicium anisatum L) Extracts

  • Shinn, Seong-Whan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.120-125
    • /
    • 2019
  • In this paper, we have isolated six phenolic compounds, such as (+)-catechin (1), taxifolin (2), taxifolin-3-O-${\beta}$-D-(+)-xylose (3), quercetin (4), quercetin-3-O-${\alpha}$-L(+)-rhamnose (quercitrin) (5), apigenin-8-C-rhamnosyl-(1'''${\rightarrow}$2'')-glucoside (2''-O-rhamnosylvitexin) (6) from the EtOAc(Ethyl Acetate) and $H_2O$ soluble fractions of Japanese anise(Illicium anisatum L) leaves and twigs. Also, we have evaluated antioxidative and antiviral activity for each isolated compound. The antioxidative test was DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity. According to the experimental results, all of the isolated compounds indicated the increased radical scavenging activities as the concentration increases and most of the isolated compounds indicated generally good antioxidative values compare to the controls, ascorbic acid and ${\alpha}$-tocopherol. In the antiviral activities, all of the isolated compounds had no potentials in rhinovirus 1B (HRV 1B). But in enterovirus 71 (EV 71) and Influenza virus A/PR/8 (Influenza PR8), only quercetin (4) indicated the good antiviral activity compare to the control. Based on the above results, we found that the phenolic compounds of Japanese anise may be applied for one of the natural biomass sources that can be used as an antioxidant and an antiviral substance.

Measurement of Antiviral Activities Using Recombinant Human Cytomegalovirus

  • 송병학;이규철;이찬희
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.255-255
    • /
    • 2002
  • For rapid and sensitive measurement of antiviral activities, application of a recombinant virus containing firefly luciferase gene was attempted. Recombinant human cytomegalovirus (HCMV) containing luciferase gene driven by HCMV late gene pp28 promoter (HCMV/pp28-luc) was used to test the antiviral activities of three known compounds and the result was compared with results from the conventional plaque assay for measuring the production of infectious viruses. When human fibroblast cells were infected with HCMV/pp28-luc, luciferase activity was observed at 2 days after infection and reached maximum at 6 days after infection, whereas the production of infectious virus was maximal at 4 days after infection. The antiviral activities of ganciclovir, acyclovir, and papaverine were measured in HFF cells infected with HCMV/PP28-luc and the luciferase activity was compared with the infectious virus titers. Luciferase activity decreased as the concentration of ganciclovir or papaverine increased, while there was a slight decrease in luciferase activity with acyclovir. The level of the decrease in Luciferase activity was comparable to the level of decrease in the production of infectious virus. Therefore, the antiviral assay using recombinant virus HCMV/pp28-luc resulted in sensitivity similar to the conventional plaque assay with a significant reduction in assay time.

Designs and Syntheses of Oxathiin Carboxanilide Analogues and their Antiviral Activities

  • Hahn, Hoh-Gyu;Rhee, Hee-Kyung;Lee, Chong-Kyo;Whang, Kyu-Ja
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.315-323
    • /
    • 2000
  • Syntheses of new analogues of oxathiin carboxanilide (UC84) and their antiviral activities were described. The heterocyclic carboxylic acids including oxathiins (4), thiazines (9) and dithiins (13) in which the methyl was replaced either by lipophilic trifluoromethyl- or bulky phenylgroup were synthesized starting from $\beta$-keto esters (5). Reaction of 4, 9 and 13 with thionyl chloride followed by treatment of the substituted aniline 22 gave the corresponding carboxanilides (24a~24f). The carboxanilides were subjected to Laweson's reagent the corresponding thiocarboxanilides (24g~24k). The antiviral activities of the synthesized compounds against human immunodeficiency virus type 1 (HIV-1), poliovirus type 1 (PV-1 ), coxsackie B virus type 3 (CoxB-3), vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1) were presented. The antiviral activity against HIV-1 of dithiin carboxanilide (24e) was similar with that of UC84 (24a). The corresponding thiocarboxanilides (24g~24k) showed higher inhibitory activity against HIV-1 than the carboxanilides (24a, 24b, 24d, 24e). The compounds in which ether the lipophilic trifluorormethyl substituents (24d, 24f, 24i ,24k) or bulky phenyl substituent is present in the heterocyclic compounds showed lower inhibitory activity than that of the methyl substituents is present in the compounds against the HIV-1. But the trifluoromethylated dithiin (24f) showed higher inhibitory activity against PV-1 and CoxB-3 virus than commercial antiviral agents, ribavirin (RV).

  • PDF

Synthesis of 1,2,3-and 1,2,4-Triazole Isonucleosides as Potential antiviral agents

  • Jeong, Soon-Yong;Kim, Myong-Jung;Chun, Moon-Won
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.181.2-181.2
    • /
    • 2003
  • Inosine monophosphate dehydrogenase(IMPDH) catalyzes the $NAD^+$-dependent oxidation of IMP to XMP, the rate limiting step in the de novo biosynthesis of guanine nucleotide. Its critical role at the metabolic branch point in purine nucleotide biosynthesis makes it a useful target in the development of drugs for antiviral and anticancer chemotherapy and in immunosupressant area. Several compound with antiviral activity have been found to be inhibitors of IMPDH. For example, ribavirin, a competitive inhibitor of IMPDH, has broad spectrum antiviral activities against DNA and RNA viruses. (omitted)

  • PDF

Inhibition of Epstein-Barr Virus by the Triterpenoid Betulin Diphosphate and Uvaol

  • Muhammad, Amjad;Carlson, Robert M.;Krasutsky, Pavel;Karim, M.Reza-Ul
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1086-1088
    • /
    • 2004
  • Betulin, a pentacyclic triterpenoid isolated from the bark of Betula papyrifera. Laboratory synthesized structural analogs were tested for antiviral activities against Epstein-Barr Virus (EBV) by immunofluorescent antiviral assay. Among the several analogs tested, betulin 3,28-diphosphate and uvaol exhibited significant antiviral activities against EBV. The $EC_{50}$ of betulin 3,28-diphosphate and uvaol was found to be $0.6\mu{M}$ and $0.7\mu{M}$ respectively.

Prophetic Medicine-Nigella Sativa (Black Cumin Seeds) - Potential Herb for COVID-19?

  • Maideen, Naina Mohamed Pakkir
    • Journal of Pharmacopuncture
    • /
    • v.23 no.2
    • /
    • pp.62-70
    • /
    • 2020
  • Coronavirus disease-19 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2). Currently, the management of patients with COVID-19 depends mainly on repurposed drugs which include chloroquine, hydroxychloroquine, lopinavir/ritonavir, ribavirin, remdesivir, favipiravir, umifenovir, interferon-α, interferon-β and others. In this review, the potential of Nigella sativa (black cumin seeds) to treat the patients with COVID-19 analyzed, as it has shown to possess antiviral, antioxidant, anti-inflammatory, anticoagulant, immunomodulatory, bronchodilatory, antihistaminic, antitussive, antipyretic and analgesic activities. Medline/PubMed Central/PubMed, Google Scholar, Science Direct, Directory of open access journals (DOAJ) and reference lists were searched to identify articles associated with antiviral and other properties of N.sativa related to the signs and symptoms of COVID-19. Various randomized controlled trials, pilot studies, case reports and in vitro and in vivo studies confirmed that N.sativa has antiviral, antioxidant, anti-inflammatory, immunomodulatory, bronchodilatory, antihistaminic, antitussive activities related to causative oraganism and signs and symptoms of COVID-19. N. sativa could be used as an adjuvant therapy along with repurposed conventional drugs to manage the patients with COVID-19.

Antiviral Effect of Korean Red Ginseng Extract and Ginsenosides on Murine Norovirus and Feline Calicivirus as Surrogates for Human Norovirus

  • Lee, Min-Hwa;Lee, Bog-Hieu;Jung, Ji-Youn;Cheon, Doo-Sung;Kim, Kyung-Tack;Choi, Chang-Sun
    • Journal of Ginseng Research
    • /
    • v.35 no.4
    • /
    • pp.429-435
    • /
    • 2011
  • Korean red ginseng has been studied various biological activities such as immune, anti-oxidative, anti-microbial, and anticancer activities but antiviral mechanism needs further studies. In this study, we aimed to examine the antiviral effects of Korea red ginseng extract and ginsenosides on norovirus surrogate, including murine norovirus (MNV) and feline calicivirus (FCV). We evaluated the pre-, co-, and post-treatment effects of Korean red ginseng (KRG), ginsenosides $Rb_1$ and $Rg_1$. To measure the antiviral effect and cytotoxicity of KRG extract, and ginsenosides $Rb_1$ and $Rg_1$, we treated Crandell-Reese Feline Kidney for FCV or RAW264.7 cells for MNV with concentrations of 0, 5, 6.7, 10, 20 ug/mL total saponin. There was cytotoxic effect in the highest concentration 20 ug/mL of KRG extract so this concentration was excluded in this study. The FCV titer was significantly reduced to 0.23-0.83 $log_{10}$ 50% tissue culture infectious dose ($TCID_{50}$)/mL in groups pre-treated with red ginseng extract or ginsenosides. The titer of MNV was significantly reduced to 0.37-1.48 $log_{10}$ $TCID_{50}$/mL in groups pre-treated with red ginseng extract or ginsenosides. However, there was no observed antiviral effect in groups co-treated or post-treated with KRG and its constituents. Our data suggest that KRG extract has an antiviral effect against norovirus surrogates. The antiviral mechanisms of KRG and ginsenosides should be addressed in future studies.

Antiviral Activity of Gallic Acid against Coxsackievirus B3 and Coxsackievirus B4 (Gallic acid의 Coxsackievirus B3와 Coxsackievirus B4에 대한 항바이러스 효과)

  • Choi, Hwa-Jung
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.207-210
    • /
    • 2014
  • Viral infections are capable of inducing reactive oxygen species (ROS) production in the infected cells and antioxidants have been reported to have antiviral activities against many viruses. In this study, an antiviral assay using the cytopathic effect (CPE) reduction method revealed that gallic acid possesses good anti-coxsackievirus B3 (CB3) and coxsackievirus B4 (CB4) activities, reducing the formation of visible CPE. However, ribavirin did exhibit weak anti-CB3 and CB4 activities and was unable to prevent CPE. Therefore, we conclude that the inhibition of CB3 or CB4 production by gallic acid may be due to its general action as an antioxidant.

Antiviral and Antitumoral Activitivies of Domestic Medicinal Plants in Macrophages (대식세포에서 국산약용식물의 항암 및 항Virus에 대한 효과)

  • Um, Sung-Hee;Kim, Dae-Keun;Kwak, Jong-Whan;Lee, Kang-Ro;Rhee, Dong-Kwon;Pyo, Suhk-Neung;Zee, Ok-Pyo
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.3
    • /
    • pp.259-264
    • /
    • 1995
  • In the present work, 70 extracts from 23 plants have been determined to induce cytotoxic and antiviral activities of macrophages using both MTT assay and neutral red dye uptake assay. We show that 13 extracts have induced cytotoxic activities and 5 extracts induced antiviral activity in mouse peritoneal macrophages. Among 13 extracts, macrophages treated with extracts from Salvia plebeia have demonstrated significant cytotoxicity but not antiviral activity. The present findings indicate that extracts from plants can stimulate macrophages to become resistant to virus and to kill tumor cells.

  • PDF