• Title/Summary/Keyword: apoptosis

Search Result 5,568, Processing Time 0.035 seconds

Apoptosis and Expressions of Apoptosis-Related Factors in Salivary Gland Tumors (타액선 종양의 세포자멸사 및 세포자멸사 연관 표지자 발현)

  • Yoon Hye-Kyoung;Kang Mi-Seon;Yi Jae-Woo;Kim Sang-Hyo
    • Korean Journal of Head & Neck Oncology
    • /
    • v.22 no.1
    • /
    • pp.15-22
    • /
    • 2006
  • Objectives: The salivary gland tumor shows heterogeneity in histologic patterns and biological behavior. The aim of this study is to elucidate the relationships between apoptosis and expressions of apoptosis-related factors(bcl-2, bax, M30), p53 and MIB-1 in the salivary gland tumors. Methods: Immunohistochemical stains for apoptosis-related factors, p53 and MIB-1 and TUNEL study for apoptosis were performed in 46 cases of salivary gland tumors 02 benign and 34 malignant). Results: Twenty(43.5%) of 46 cases showed positive reaction for apoptosis, and the expression rates of bcl-2, bax, M30, p53 and MIB-1 were 85.3%, 68.8%, 65.9%, 39.1% and 26.1%, respectively. A significant difference between benign and malignant tumors was only noted in MIB-1 expression(p=0.0167). In malignant tumors, apoptosis showed no significant relationships to expressions of apoptosis-related factors. There were inverse relationships between p53 and bcl-2 expression(p=0.0375), and between M30 and MIB-1 expressions(p=0.0379). No significant differences of apoptosis, bcl-2, bax, M30, p53 and MIB-1 expression rates according to the tumor size, lymph node status, recurrence and survival were found. Conclusion: In the development of benign and malignant salivary gland tumors, apoptosis might be associated, however, apoptosis and expressions of apoptosis-related factors seemed to be not reliable prognostic factors in malignant salivary gland tumors.

Induction of Apoptosis by Ursolic Acid in F9 Teratocarcinoma Cells (F9 기형암종세포에서 Ursolic acid의 apoptosis 유도기작)

  • 강창모;백진현;김규원
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.51-59
    • /
    • 1998
  • The apoptosis-inducing activity of ursolic acid (UA) was examined in mouse F9 teratocarcinoma cells on the bases of biochemical and morphological characteeristics. UA, pentacyclic trierpene acid, exhibits antitumor activities including inhibition of skin tumorigenesis, induction of tumor cell differentiation and antitumor promotion. Treatment with UA showed that the decrease of cell viability was dose-dependent. UA also induced genomic DNA fragmetation, a hallmark of apoptosis, indicating that the mechanism of UA-induced F9 cell death was through apoptosis. When the morphology of the F9 cells was examined by electron microscopy, the cells treated with UA showed the charcteristic morphological features of apoptosis such as chromatin condensation and nuclear fragmentation. DNA fragmentations by UA were inhibired by cycloheximide, which suggest that de novo protein synthesis was required for DNA fragmentation by UA. Inaddition, the expression of c-jun was increased, but those of c-myc and laminin B1 were decreased during apoptosis induced by UA in F9 cells. These results suggest that UA causes an apoptosis in F9 cells. Further, the increased expression of c-jun may be involved in the UA-induced apoptosis of f9 cells.

  • PDF

An Increased Proportion of Apoptosis in CD4+ T Lymphocytes Isolated from the Peripheral Blood in Patients with Stable Chronic Obstructive Pulmonary Disease

  • Ju, Jinyung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.81 no.2
    • /
    • pp.132-137
    • /
    • 2018
  • Background: The pathophysiology of chronic obstructive pulmonary disease (COPD) includes inflammation, oxidative stress, an imbalance of proteases and antiproteases and apoptosis which has been focused on lately. Abnormal apoptotic events have been demonstrated in both epithelial and endothelial cells, as well as in inflammatory cells including neutrophils and lymphocytes in the lungs of COPD patients. An increased propensity of activated T lymphocytes to undergo apoptosis has been observed in the peripheral blood of COPD patients. Therefore, the apoptosis of T lymphocytes without activating them was investigated in this study. Methods: Twelve control subjects, 21 stable COPD patients and 15 exacerbated COPD patients were recruited in the study. The T lymphocytes were isolated from the peripheral blood using magnetically activated cell sorting. Apoptosis of the T lymphocytes was assessed with flow cytometry using Annexin V and 7-aminoactinomycin D. Apoptosis of T lymphocytes at 24 hours after the cell culture was measured so that the T lymphocyte apoptosis among the control and the COPD patients could be compared. Results: Stable COPD patients had increased rates of $CD4^+$ T lymphocyte apoptosis at 24 hours after the cell culture, more than the $CD4^+$ T lymphocyte apoptosis which appeared in the control group, while the COPD patients with acute exacerbation had an amplified response of $CD4^+$ T lymphocyte apoptosis as well as of $CD8^+$ T lymphocyte apoptosis at 24 hours after the cell culture. Conclusion: Stable COPD patients have more apoptosis of $CD4^+$ T lymphocytes, which can be associated with the pathophysiology of COPD in stable conditions.

The Heat Shock Protein 27 (Hsp27) Operates Predominantly by Blocking the Mitochondrial-Independent/Extrinsic Pathway of Cellular Apoptosis

  • Tan, Cheau Yih;Ban, Hongseok;Kim, Young-Hee;Lee, Sang-Kyung
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.533-538
    • /
    • 2009
  • Heat shock protein 27 (Hsp27) is a molecular chaperone protein which regulates cell apoptosis by interacting directly with the caspase activation components in the apoptotic pathways. With the assistance of the Tat protein transduction domain we directly delivered the Hsp27 into the myocardial cell line, H9c2 and demonstrate that this protein can reverse hypoxia-induced apoptosis of cells. In order to characterize the contribution of Hsp27 in blocking the two major apoptotic pathways operational within cells, we exposed H9c2 cells to staurosporine and cobalt chloride, agents that induce mitochondria-dependent (intrinsic) and -independent (extrinsic) pathways of apoptosis in cells respectively. The Tat-Hsp27 fusion protein showed a greater propensity to inhibit the effect induced by the cobalt chloride treatment. These data suggest that the Hsp27 predominantly exerts its protective effect by interfering with the components of the extrinsic pathway of apoptosis.

Nuclear Factor-κB Activation: A Question of Life or Death

  • Shishodia, Shishir;Aggarwal, Bharat B.
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.28-40
    • /
    • 2002
  • Apoptosis is a mode of cell death that plays an important role in both pathological and physiological processes. Research during the last decade has delineated the entire machinery needed for cell death, and its constituents were found to pre-exist in cells. The apoptotic cascade is triggered when cells are exposed to an apoptotic stimulus. It has been known for several years that inhibitors of protein synthesis can potentiate apoptosis that is induced by cytokines and other inducers. Until 1996, it was not understood why protein synthesis inhibitors potentiate apoptosis. Then three reports appeared that suggested the role of the transcription factor NF-${\kappa}B$ activation in protecting the cells from TNF-induced apoptosis. Since then several proteins have been identified that are regulated by NF-${\kappa}B$ and are involved in cell survival, proliferation, and protection from apoptosis. It now seems that when a cell is attacked by an apoptotic stimulus, the cell responds first by activating anti-apoptotic mechanisms, which mayor may not be followed by apoptosis. Whether or not a cell undergoes proliferation, the survival, or apoptosis, appears to involve a balance between the two mechanisms. Inhibitors of protein synthesis seem to suppress the appearance of protein that are involved in anti-apoptosis. The present review discusses how NF-${\kappa}B$ controls apoptosis.

Regulatory Role of Autophagy in Globular Adiponectin-Induced Apoptosis in Cancer Cells

  • Nepal, Saroj;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.384-389
    • /
    • 2014
  • Adiponectin, an adipokine predominantly secreted from adipose tissue, exhibits diverse biological responses, including metabolism of glucose and lipid, and apoptosis in cancer cells. Recently, adiponectin has been shown to modulate autophagy as well. While emerging evidence has demonstrated that autophagy plays a role in the modulation of proliferation and apoptosis of cancer cells, the role of autophagy in apoptosis of cancer cell caused by adiponectin has not been explored. In the present study, we demonstrated that globular adiponectin (gAcrp) induces both apoptosis and autophagy in human hepatoma cell line (HepG2 cells) and breast cancer cells (MCF-7), as evidenced by increase in caspase-3 activity, Bax, microtubule-associated protein light chain 3-II (LC3 II) protein levels, and autophagosome formation. Interestingly, gene silencing of LC3B, an autophagy marker, significantly enhanced gAcrp-induced apoptosis in both HepG2 and MCF-7 cell lines, whereas induction of autophagy by rapamycin, an mTOR inhibitor, significantly prevented gAcrp-induced apoptosis in hepatoma cells HepG2. Furthermore, modulation of autophagy produced similar effects on gAcrp-induced Bax expression in HepG2 cells. These results implicate that induction of autophagy plays a regulatory role in adiponectin-induced apoptosis of cancer cells, and thus inhibition of autophagy would be a novel promising target to enhance the efficiency of cancer cell apoptosis by adiponectin.

Dihydroartemisinine Enhances Dictamnine-induced Apoptosis via a Caspase Dependent Pathway in Human Lung Adenocarcinoma A549 Cells

  • An, Fu-Fei;Liu, Yuan-Chong;Zhang, Wei-Wei;Liang, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5895-5900
    • /
    • 2013
  • Dictamnine (Dic) has the ability to exert cytotoxicity in human cervix, colon, and oral carcinoma cells and dihydroartemisinin (DHA) also has potent anticancer activity on various tumour cell lines. This report explores the molecular mechanisms by which Dic treatment and combination treatment with DHA and Dic cause apoptosis in human lung adenocarcinoma A549 cells. Dic treatment induced concentration- and time-dependent cell death. FCM analysis showed that Dic induced S phase cell cycle arrest at low concentration and cell apoptosis at high concentration in which loss of mitochondrial membrane potential (${\Delta}{\Psi}m$) was not involved. In addition, inhibition of caspase-3 using the specific inhibitor, z-DQMD-fmk, did not attenuate Dic-induced apoptosis, implying that Dic-induced caspase-3-independent apoptosis. Combination treatment with DHA and Dic dramatically increased the apoptotic cell death compared to Dic alone. Interestingly, pretreatment with z-DQMD-fmk significantly attenuated DHA and Dic co-induced apoptosis, implying that caspase-3 plays an important role in Dic and DHA co-induced cell apoptosis. Collectively, we found that Dic induced S phase cell cycle arrest at low concentration and cell apoptosis at high concentration in which mitochondria and caspase were not involved and DHA enhanced Dic induced A549 cell apoptosis via a caspase-dependent pathway.

ACTIVATION OF NF-$\kappa$B IN THE CISPLATIN-INDUCED APOPTOSIS OF ORAL SQUAMOUS CELL CARCINOMA (구강편평세포암종에서의 Cisplatin 유도 아폽토시스에서의 NF-$\kappa$B의 활성화)

  • Seo, Jong-Chun;Sung, Iel-Yong;Kim, Jong-Roul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.2
    • /
    • pp.94-100
    • /
    • 2006
  • Purpose: This study was done to confirm the role of NF-$\kappa$B in cisplatin-induced apoptosis of oral squamous cell carcinoma. Materials and Methods: Five cell lines originated from different oral cancer patients were tested for the apoptosis by the treatment of cisplatin. These cells showed different degree of cisplatin-resistance and the order is OSCC-2>OSCC-3>OSCC-5> OSCC-1>OSCC-4. OSCC-2 and OSCC-4 cells were assayed for the apoptosis by measuring DNA fragmentation and TUNEL staining after cisplatin treatment. While OSCC-4 cells showed apoptosis, OSCC-2 cells showed no or very slight apoptosis by cisplatin treatment. Next, It was determined whether NF-$\kappa$B activation is required in mediating cisplatin-induced apoptosis of OSCC-4. Result: The result was that elevated NF-$\kappa$B activity mediated cisplatin-induced apoptosis. Conclusion: In conclusion, these findings suggest that NF-$\kappa$B activation is essential to cisplatin-induced apoptosis and it may be involved in cisplatin resistance in OSCC cells.

Induction of Apoptosis by Camptothecin in HL-60 Cells (HL-60 세포에서 Camptothecin의 apoptosis 유도작용)

  • 김해종;천영진;김미영
    • YAKHAK HOEJI
    • /
    • v.43 no.3
    • /
    • pp.385-390
    • /
    • 1999
  • Camptothecin (CPT) has been known to induce apoptosis in various cancer cell lines. To examine the intracellular apoptotic death signal initiated by CPT, we investigated the possible connection between caspase-3 activation and GSH depletion during CPT-induced apoptosis in HL-60 cells. Treatment of cells with $1{\;}{\mu}M$ CPT induced PARP cleavage accompanied by DNA fragmentation. z-VAD-fmk, a caspase-3 inhibitor, blocked the CPT-induced DNA fragmentation. Pretreatment of cells with N-acetylcysteine, a precursor of GSH biosynthesis, failed to inhibit CPT-induced PARP celavage and DNA gragmenatation. No significant changes in GSH depletion is not essential for caspase activation during CPT-induced apoptosis. We also investigated whether CPT-induced apoptosis is associated with changes of the levels of Bax and Bcl-2, two proteins involved in the control of apoptosis. Bcl-2 levels exhibited a late decrease compared with the kinetics of DNA fragmentation, whereas Bax levels increased more rapidly after CPT treatment. These results suggest that Bax plays more important role than Bcl-2 in inducing DNA fragmentation and may function upsteam of proteolytic activation of caspase-3 pathway in CPT-induced apoptosis.

  • PDF

Paraquat Induces Apoptosis through Cytochrome C Release and ERK Activation

  • Seo, Hong Joo;Choi, Sang Joon;Lee, Jung-Hee
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.503-509
    • /
    • 2014
  • Paraquat has been suggested to induce apoptosis by generation of reactive oxygen species (ROS). However, little is known about the mechanism of paraquat-induced apoptosis. Here, we demonstrate that extracellular signal-regulated protein kinase (ERK) is required for paraquat-induced apoptosis in NIH3T3 cells. Paraquat treatment resulted in activation of ERK, and U0126, inhibitors of the MEK/ERK signaling pathway, prevented apoptosis. Moreover, paraquat-induced apoptosis was associated with cytochrome C release, which could be prevented by treatment with the MEK inhibitors. Taken together, our findings suggest that ERK activation plays an active role in mediating paraquat-induced apoptosis of NIH3T3 cells.