• Title/Summary/Keyword: aquatic ecosystem health

Search Result 130, Processing Time 0.029 seconds

Resilience and Resistance of Biological Community : Application for Stream Ecosystem Health Assessment (생물 군집의 회복력 및 저항력 : 하천생태계 건전성 평가를 위한 응용성)

  • Ro, Tae-Ho
    • Journal of Environmental Policy
    • /
    • v.1 no.1
    • /
    • pp.91-110
    • /
    • 2002
  • Ecosystem health assessment is an emerging concept regarded as a useful diagnostic tool for evaluating ecosystems. The stability of ecosystem is the main theme in the assessment. Generally, two components - resilience and resistance - are involved in the mechanism of ecosystem stability. In this study, relative degrees of the resistance and the resilience were quantified for most aquatic Insects Inhabiting running waters in Korea. A total of 34 groups were newly categorized based on previous studies, and a conceptual model has been produced. The model was applied for the aquatic insect communities inhabiting different streams and demonstrated that each stream ecosystem possessed different degrees of stability. This study also indicated that it was possible to compare stabilities of different ecosystems using relative degrees of resilience and resistance. Using the conceptual model, suitable conservation and management strategies could be recommended in ecological assessments. The model can be used as a stepping-stone for developing more comprehensive methodology that objectively diagnoses and evaluates the ecosystem stability.

  • PDF

Chemical Ranking and Scoring Methodology for the Protection of Human Health and Aquatic Ecosystem in Korean Surfacewater: CRAFT (Chemical RAnking of surFacewater polluTants) (인체 및 수생태 보호를 위한 지표수 우선관리대상 항목 선정기법: CRAFT (Chemical RAnking of surFacewater polluTants))

  • Nam, Sun-Hwa;Kwak, Jin Il;Yoon, Sung-Ji;Jeong, Seung-Woo;An, Youn-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.804-812
    • /
    • 2011
  • To prevent the overflow of various harmful chemicals, it is necessary to modify the chemical management system with an expansion to institutionally regulated substances. This modification should be preceded by selection of the priority chemicals, with a diverse chemical ranking system (CRS) applied to select the chemicals in developed countries. In Korea, a systematic CRS was used in a project related to soil and groundwater, however, it is inadequate to compare soil and groundwater CRS to that of surfacewater. In this study, a priority chemical ranking system for surfacewater was proposed through the analysis of international and domestic CRS cases. This was then applied to 161 chemicals to derive the priority list of harmful chemicals. As a result, Chemical RAnking of surFacewater polluTants (CRAFT) is presented for the protection of human health and the aquatic ecosystem from surfacewater pollutants. The components of CRAFT are the human health toxicity, aquatic ecosystem toxicity and reliability assessment factors. Three lists were derived from the 161 priority harmful chemicals for the protection of human health, aquatic ecosystem or both. It is expected that this result can be useful to prioritize harmful chemicals for the protection of human health and the aquatic ecosystem from Korean surfacewater.

Effects of Gasoline Additive, Methyl tert-Butyl Ether (MTBE) to Human Health and Ecosystem (가솔린첨가제 MTBE의 인체 및 생태영향)

  • An Youn-Joo;Lee Woo-Mi
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.2 s.53
    • /
    • pp.93-102
    • /
    • 2006
  • Methyl tert-butyl ether (MTBE), an octane booster that is added to the reformulated gasoline, has been a widespread contaminant in aquatic ecosystem. MTBE is a recalcitrant pollutant having low biodegradability. Due to its higher water solubility and low octanol-water partition coefficient, it can be rapidly transported to the surrounding water environment. Also, MTBE is a known animal carcinogen, and is classified as a possible human carcinogen by U. S. Environmental Protection Agency. The adverse effect of MTBE to aquatic biota was widely reported. In Korea, the recent detection of MTBE in groundwater near gasoline filling stations has drawn concern to public health and ecosystem. To address this concern, the effect of MTBE to human health and ecosystem was discussed in this review. Also, ecotoxicity data of MTBE for fish, invertebrates, and algae were extensively compared to estimate the hazard concentration 5($HC_5$) of MTBE as a screening level.

Ecological Risk Assessment of Chemicals of Concern for Initiation of Ecorisk-based Water Quality Standards in Korea (생태수질기준설정을 위한 대상물질의 생태위해성 평가)

  • An, Youn-Joo;Nam, Sun-Hwa;Kim, Yong-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.592-597
    • /
    • 2008
  • Current water quality standard (WQS) in Korea is based on the protection of human health, not considering the protection of aquatic organisms. Most of chemicals can be toxic to ecological biota as well as human. Health of aquatic biota is closely related to the human health via food chain, therefore ecological risk based-WQS needs to be developed to protect the aquatic ecosystem. In this study, we selected the 31 chemicals in the Project entitled 'Development of integrated methodology for evaluation of water environment'. The methodology for calculating water quality criteria was derived from the Australian and New Zealand processes for deriving guideline trigger value for aquatic ecosystem. The available ecotoxicity data were collected from US EPA's ECOTOXicology Database (ECOTOX), TOX-2000 Database, European Chemicals Bureau (ECB)'s International Uniform Chemical Information Database (IUCLID) and Environmental Protection Agency (US EPA)'s report 'Ambient Water Quality Criteria (AWQC)'. The aquatic toxicity data for the Korean species were selected for risk assessment to reflect the Korean water environment. The monitoring values were calculated from the water quality monitoring data four main Korean rivers. We suggested the order of priorities of chemicals based on ecological risk assessment. We expect that these results can be useful information for establishing the WQS for the protection of aquatic ecosystem.

Assessment of changes on water quality and aquatic ecosystem health in Han river basin by additional dam release of stream maintenance flow (하천유지유량 추가 댐방류에 따른 한강유역의 수질 및 수생태계 건강성 변화 평가)

  • Woo, So Young;Kim, Seong Joon;Hwang, Sun Jin;Jung, Chung Gil
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.777-789
    • /
    • 2019
  • The purpose of this study is to evaluate changes in water quality and aquatic ecosystem health by additional dam release of stream maintenance flow from multipurpose dams in Han river basin ($34,148km^2$) using SWAT (Soil and Water Assessment Tool). The period of additional release was spring (April to June) and autumn (August to October) to evaluate the changes with the data of aquatic ecosystem health survey. The amount of additional release was set proportional to the present dam release, and the maximum release amount was controlled not to exceed the officially notified stream maintenance flow from dam. The 10 percent to 50 percent additional releases showed that the stream water quality (T-N, $NH_4$, T-P, and $PO_4-P$) concentrations except $NO_3-N$ decreased in spring while increased in autumn period. Using the stream water quality results and applying with Random Forest algorithm, the grade of aquatic ecosystem health index (FAI, TDI, and BMI) was improved for both periods especially in the downstream of basin. This study showed that the additional release of stream maintenance flow was more effective in spring than autumn period for the improvement of water quality and aquatic ecosystem.

Health Assessment of the Nakdong River Basin Aquatic Ecosystems Utilizing GIS and Spatial Statistics (GIS 및 공간통계를 활용한 낙동강 유역 수생태계의 건강성 평가)

  • JO, Myung-Hee;SIM, Jun-Seok;LEE, Jae-An;JANG, Sung-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.174-189
    • /
    • 2015
  • The objective of this study was to reconstruct spatial information using the results of the investigation and evaluation of the health of the living organisms, habitat, and water quality at the investigation points for the aquatic ecosystem health of the Nakdong River basin, to support the rational decision making of the aquatic ecosystem preservation and restoration policies of the Nakdong River basin using spatial analysis techniques, and to present efficient management methods. To analyze the aquatic ecosystem health of the Nakdong River basin, punctiform data were constructed based on the position information of each point with the aquatic ecosystem health investigation and evaluation results of 250 investigation sections. To apply the spatial analysis technique, the data need to be reconstructed into areal data. For this purpose, spatial influence and trends were analyzed using the Kriging interpolation(ArcGIS 10.1, Geostatistical Analysis), and were reconstructed into areal data. To analyze the spatial distribution characteristics of the Nakdong River basin health based on these analytical results, hotspot(Getis-Ord Gi, $G^*_i$), LISA(Local Indicator of Spatial Association), and standard deviational ellipse analyses were used. The hotspot analysis results showed that the hotspot basins of the biotic indices(TDI, BMI, FAI) were the Andong Dam upstream, Wangpicheon, and the Imha Dam basin, and that the health grades of their biotic indices were good. The coldspot basins were Nakdong River Namhae, the Nakdong River mouth, and the Suyeong River basin. The LISA analysis results showed that the exceptional areas were Gahwacheon, the Hapcheon Dam, and the Yeong River upstream basin. These areas had high bio-health indices, but their surrounding basins were low and required management for aquatic ecosystem health. The hotspot basins of the physicochemical factor(BOD) were the Nakdong River downstream basin, Suyeong River, Hoeya River, and the Nakdong River Namhae basin, whereas the coldspot basins were the upstream basins of the Nakdong River tributaries, including Andong Dam, Imha Dam, and Yeong River. The hotspots of the habitat and riverside environment factor(HRI) were different from the hotspots and coldspots of each factor in the LISA analysis results. In general, the habitat and riverside environment of the Nakdong River mainstream and tributaries, including the Nakdong river upstream, Andong Dam, Imha Dam, and the Hapcheon Dam basin, had good health. The coldspot basins of the habitat and riverside environment also showed low health indices of the biotic indices and physicochemical factors, thus requiring management of the habitat and riverside environment. As a result of the time-series analysis with a standard deviation ellipsoid, the areas with good aquatic ecosystem health of the organisms, habitat, and riverside environment showed a tendency to move northward, and the BOD results showed different directions and concentrations by the year of investigation. These aquatic ecosystem health analysis results can provide not only the health management information for each investigation spot but also information for managing the aquatic ecosystem in the catchment unit for the working research staff as well as for the water environment researchers in the future, based on spatial information.

Health Evaluation and Fish Population Analysis by Using LEHA (Lentic Ecosystem Health Assessment) Model (LEHA 모델을 이용한 어류군집 특성 분석 및 건강성 평가)

  • Han, Seock-Jung;Kim, Bong-Rae;Cha, Jun-Seong;Kang, Kyoung-Ho;Jung, Min-Min
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.6
    • /
    • pp.1185-1192
    • /
    • 2014
  • Health assessment of aquatic ecosystem was investigated by using LEHA (Lentic Ecosystem Health Assessment) model method with habitat fish population structure analysis in this study. The investigation was two comparison spots (St 1; floating island, St 2; 500 m away site from st 1) in the Habcheon lake of Korea. As results, health evaluation of Habcheon lake ecosystem was fair grade of LEHA scores base on metric values in both place (30 score in st. 1 and 32 score in st. 2).

Development Necessity of Diatom Indices for the Integrated Assessment of Water Quality and Aquatic Ecosystem of Korean Streams (수질 및 수생태계 평가를 위한 한국형 돌말지수의 개발 필요성)

  • Kim, Ha-Kyung;Ahn, Eun-Seo;Cho, In-Hwan;Kim, Young-Hyo;Hwang, Eun-A;Kim, Yong-Jae;Hwang, Soon-Jin;Lee, Jae-Kwan;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • River water quality and organisms have a very close relationship with the human living environment and health, so it is very important to ensure and maintain the ecological integrity of the aquatic ecosystem. In that sense, benthic diatoms have relatively little mobility, can explain the effects of long-term exposed pollution sources, and are very suitable indicator organisms for river ecosystem evaluation. Diatom ecologists have been developed various diatom indices to assess water quality and stream ecosystem over the world. However, they so far have insufficient identification of taxa, are strongly regional, and are difficult to apply as they are domestically. Unfortunately, there has not been developed an independent diatom index suitable for the Korean stream. Therefore, management of water quality and aquatic ecosystem suitable for domestic rivers can be made, and development or improvement of comprehensive multivariate diatom index for the integrated assessment of water quality and aquatic ecosystem is urgently needed.

Health Assessment of Aquatic Ecosystem for Wonju Stream Using the Composition of Aquatic Insects (수서곤충을 이용한 원주천 수서생태계 건강도 평가)

  • Choi, Jun-Kil;Shin, Hyun-Seon;Mitamura, Osamu;Kim, Sook-Jung
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.5
    • /
    • pp.544-550
    • /
    • 2008
  • This study conducted a survey on the ecosystem of Wonju stream from May until November in 2004 and made an health assessment of Wonju stream using family biotic indices(FBI) and physical habitat assessment(PHA) of the aquatic insects. Through this survey, aquatic insects covering 8 orders, 37 families, 62 genuses, and 92 species were observed at 9 stations along Wonju stream. In terms of family biotic indices, it was confirmed that station 1,2 and 3 were maintaining the healthiest stream ecosystem with the value ranging from 4.55 to 4.82. In addition, station 2 was found to have the best habitat environment in the correlation between physical habitat assessment and family biotic indices with its value of 100 and 4.82, respectively. However, station 7 and 9 showed the lowest habitat environment with the value of 45, 6.17 and 45, 6.97, respectively. posing the need for improvement in PHA; further, station 7 and 9 showed inverted correlationship between PHA and FBI.

Building a GIS Database for Analyzing the Integrated Information on Aquatic Ecosystem Health and Its Application (수생태계 건강성 통합정보 분석을 위한 GIS DB 구축 및 활용에 관한 연구)

  • Jo, Myung-Hee;Lee, Su-Hyung;Choi, Hee-Lak;Jang, Sung-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.189-203
    • /
    • 2013
  • The purpose of this study is to build a GIS database that can utilized to provide a multi-dimensional analysis of aquatic health ecosystem. Especially, it was to build a GIS database for comprehensive analysis using the aquatic ecosystem health. So we collected data on aquatic ecosystem health assessment, Korea Reach File(KRF), Stream Naturalness and Water Environmental Information System, and detailed analysis of the collected data was performed. In addition, the core objects were extracted from individual data and a related entity was derived by pulling out the items associated with thematic characteristics and classifying them. The establishment of GIS database makes it possible to support the decision making for the user to quickly understand the information of water environment. Therefore, the database will provide the information for the effective management on water environment.