• Title/Summary/Keyword: arbitrary waveform

Search Result 49, Processing Time 0.026 seconds

Arbitrary Waveform Generation via Spectral Line-by-Line Pulse Shaping on Mode-Locked Pulses

  • Seo, Dong-Sun;Jiang, Zhi;Weiner, Andrew M.
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.116-122
    • /
    • 2006
  • We have built a grating-based, high-resolution, spectral line-by-line pulse shaper. By controlling individual spectral lines of a mode-locked laser output, we demonstrate the interesting functionalities of the pulse shaper for arbitrary waveform generation, such as width tunable pulse generation, phase controlled waveform generation, microwave waveform generation, etc.

  • PDF

Implementation of an Arbitrary Waveform Generator for Built-Out Self-Test (반도체 외장형 자체 테스트를 위한 임의 파형 생성기 구현)

  • Lee, Changjin;Kim, Donghyuk;Ahn, Jin-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.146-151
    • /
    • 2021
  • We introduce an arbitrary waveform generation method and its H/W implementation case based on Rademacher and Walsh function. According to the orthogonal and periodic features of Rademacher and Walsh function, simple calculations can generate arbitrary waves with affordable logics. We implemented an FPGA-based AWS using above two functions, and verified. HDL simulation shows the proposed idea can draw desired analog test waveforms very fast, and its H/W size is promising to Built-Out Self-Test(BOST) logics for AI ICs.

CONSTRUCTION OF CORE LOSS MEASURING SYSTEM FOR ARBITRARY WAVEFORM OF MAGNETIC INDUCTION

  • Son, D.;Sievert, J.D.;Cho, Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.395-398
    • /
    • 1995
  • For the core loss measurement under arbitrary waveform of magnetic induction, we have constructed a single sheet core loss measuring system which consists of yoke apparatus for single sheet of $10\;cm{\times}10\;cm$, arvitrary waveform synthesizer, B-feedback system, and two channel transient recorder. Using the constructed measuring system, we can measure core loss including higher harmonics up to 2 kHz. Core loss of non-oreinted electrical steel was increased exponentially when higher harmonic frequency was increased or amplitude of harmonic induction was increased.

  • PDF

An Arbitrary Waveform 16 Channel Neural Stimulator with Adaptive Supply Regulator in 0.35 ㎛ HV CMOS for Visual Prosthesis

  • Seo, Jindeok;Lim, Kyomuk;Lee, Sangmin;Ahn, Jaehyun;Hong, Seokjune;Yoo, Hyungjung;Jung, Sukwon;Park, Sunkil;Cho, Dong-Il Dan;Ko, Hyoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.79-86
    • /
    • 2013
  • We describe a neural stimulator front-end with arbitrary stimulation waveform generator and adaptive supply regulator (ASR) for visual prosthesis. Each pixel circuit generates arbitrary current waveform with 5 bit programmable amplitude. The ASR provides the internal supply voltage regulated to the minimum required voltage for stimulation. The prototype is implemented in $0.35{\mu}m$ CMOS with HV option and occupies $2.94mm^2$ including I/Os.

Cryogenic voltage sampling for arbitrary RF signals transmitted through a 2DEG channel

  • Kim, Min-Sik;Kim, Bum-kyu;Kim, U.J.;Choi, H.K.;Kim, Ju-Jin;Bae, Myung-Ho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.2
    • /
    • pp.23-26
    • /
    • 2022
  • A lossless transport of an arbitrary waveform in a frequency range of 106-109 Hz through a conduction channel in a cryogenic temperature is of importance for a high-speed operation of quantum device. However, it is hard to use a commercial oscilloscope to directly detect the waveform travelling in a device located in a cryogenic system. Here, we developed a cryogenic voltage sampling technique by using a Schottky barrier gate prepared on a surface of a GaAs/AlGaAs device, which revealed that an incident rectangle waveform can transport through a 1 mm long two-dimensional conduction channel without waveform deformation up to 20 MHz, while further study is needed to increase the detection frequency.

Optimized Sigma-Delta Modulation Methodology for an Effective FM Waveform Generation in the Ultrasound System (효율적인 주파수 변조된 초음파 파형 발생을 위한 최적화된 시그마 델타 변조 기법)

  • Kim, Hak-Hyun;Han, Ho-San;Song, Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.429-440
    • /
    • 2007
  • A coded excitation has been studied to improve the performance for ultrasound imaging in term of SNR, imaging frame rate, contrast to tissue ratio, and so forth. However, it requires a complicated arbitrary waveform transmitter for each active channel that is typically composed of a multi-bit Digital-to-Analog Converter (DAC) and a linear power amplifier (LPA). Not only does the LPA increase the cost and size of a transmitter block, but it consumes much power, increasing the system complexity further and causing a heating-up problem. This paper proposes an optimized 1.5bit fourth order sigma-delta modulation technique applicable to design an efficient arbitrary waveform generator with greatly reduced power dissipation and hardware. The proposed SDM can provide a required SQNR with a low over-sampling ratio of 4. To this end, the loop coefficients are optimized to minimize the quantization noise power in signal band while maintaining system stability. In addition, the decision level for the 1.5 bit quantizer is optimized for a given input waveform, which results in the SQNR improvement of more than 5dB. Computer simulation results show that the SQNR of a FM(frequency modulated) signal generated by using the proposed method is about 26dB, and the peak side-lobe level (PSL) of its compressed waveform on receive is -48dB.

Design of the Single-loop Voltage Controller for Arbitrary Waveform Generator (임의 파형 발생기를 위한 단일 루프 전압 제어기 설계)

  • Kim, Hyeon-Sik;Chee, Seung-Jun;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • This study presents a design method for a single-loop voltage controller that is suitable for an arbitrary waveform generator (AWG). The voltage control algorithm of AWG should ensure high dynamic performance and should attain sufficient robustness to disturbances such as inverter nonlinearity, sensor noise, and load current. By analyzing the power circuit of AWG, control limitation and control target are presented to improve the dynamic performance of AWG. The proposed voltage control algorithm is composed of a single-loop output voltage control, an inverter current feedback term to improve transient response, and a load current feedforward term to prevent voltage distortion. The guideline for setting control gain is presented based on output filter parameters and digital time delay. The performance of the proposed algorithm is proven by experimental results through comparison with the conventional algorithm.

The Development of a Programmable Single-Phase AC Power Source with a Linear Power Amplifier

  • Jeon, Jeong-Chay;Jeon, Hyun-Jae;Yoo, Jae-Geun;Son, Jae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.39-46
    • /
    • 2007
  • This paper presents a programmable single-phase ac power source that provides a sinusoidal output voltage with an adjustable output amplitude and frequency over a wide range as well as an arbitrary waveform. The ac power source under consideration have a linear power amplifier. The desired output values can be programmed with a personal computer. The power source operates at 220[V]/60[Hz] mains and the output voltage is isolated from the input circuit. The system consists mainly of a power converter to generate and amplify the waveform signal, a controller to control the desired output signal and measure the output parameters, and a control program to set the desired output and display the values. The prototype ac power source was constructed and tested with the results demonstrating a good performance.

Development of Isolated Arbitrary Waveform Generator Based on Microprocessor (마이크로프로세서를 이용한 분리형 임의파형발생기의 개발)

  • Kim, Nam-Hyun;Kim, Won-Ky;Yoo, Sun-Kook;Yang, Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.53-58
    • /
    • 1989
  • An arbitrary waveform generator was developed for the experiment of electro-physiology and the electrical stimulator. This system has been constructed three parts. (1 ) Data input parts (2) Data processing and control parts (3) Analog signal output parts The system characteristics were as follows. (1) System based on Microprocessor (2) Input using Thumbwheel switch (3) Isolated output signal (4) System flexibility

  • PDF

The Design and Implementation of a 5 kW Programmable Three-Phase Harmonic Generator

  • Jeon, Jeong-Chay;Jeon, Hyun-Jae;Choi, Myoung-Il;Park, Chee-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.162-166
    • /
    • 2008
  • This paper presents the design and implementation of a 5kW programmable three-phase harmonic generator, which is capable of generating sinusoidal output voltages with adjustable output amplitude and frequency over a wide range as well as arbitrary waveforms. The considered harmonic generator is a linear power amplifier type. This system consists mainly of a power converter to generate and amplify waveform signals, a controller to control the desired output signal and measure the output parameters including voltage and current, and a control program to set the desired output and display the output values. The prototype programmable three-phase harmonic generator has been constructed and tested. Test results show that the developed programmable three-phase harmonic generator performs well.