• Title/Summary/Keyword: aroma compounds

Search Result 304, Processing Time 0.019 seconds

Volatile Flavor Compounds from Raw Mugwort Leaves and Parched Mugwort Tea (생쑥과 덖음쑥차의 향기성분)

  • 김영숙;이종호;김무남;이원구;김정옥
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.261-267
    • /
    • 1994
  • Parched mugwort tea was manufactured from mugwort (Artemisia asicatica nakai) leaves by traditional green tea preparation method. Volatile flavor compounds were collected by Tenax GC and they separated on DB-5 capillary column ($60m\;\times\;0.25mm$ i.d.) Fifty eight compounds were isolated and identified by GC-MS from the volatiles. Eleven compounds incucluding benzaldehyde, pinene, myrcene, cineole, 2-phrrolidinonoe, camphor, thujong, 1-acetylpiperidine, caryophyllene, coumarin, and farnesol among the compounds identified were considered as important compounds contributing mugwort-like flavor to the parched mugwort tea. The mixture of these eleven authentic compounds could reproduce aroma of mugwort leaves harvested in April. As results, the concentrations of these eleven flavor compounds in parched mugwort tea may indicate the strength of mugwort-like aroma of the tea.

  • PDF

Studies on the Free and Bound Aroma Compounds in Green and Fermented Teas (녹차와 후발효차의 유리형 및 결합형 향기성분에 대한 연구)

  • Lee, Hye-Jin;Park, Seung-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.407-412
    • /
    • 2011
  • Free and bound aroma compounds in green and fermented teas treated with microbial-fermentation were analyzed using headspace-solid phase microextraction gas chromatography (GC) and GC-mass spectrometry. Aldehydes and ketones in green tea decreased during microbial fermentation, whereas linalool and geraniol increased in the fermented tea. After enzyme treatment, (Z)-3-hexen-1-ol increased significantly following enzymatic hydrolysis of both green and fermented teas. In addition, benzaldehyde, 3-hexenyl acetate, and geraniol also increased in green tea with enzyme treatment. Bound aroma compounds in the green and fermented teas increased at different levels of added enzyme. We demonstrated the enhancement of both green and fermented teas by enzyme treatment, which can lead to improvement in the flavor qualities of green and fermented teas.

Studies on the volatile aroma components of Edible mushroom (Tricholoma matsutake) of Korea (한국산(韓國産) 식용(食用)버섯의 향기성분(香氣成分)에 관(關)한 연구(硏究) (I) -송이 버섯의 향기성분(香氣成分)-)

  • Ahn, Jang-Soo;Lee, Kyu-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.3
    • /
    • pp.253-257
    • /
    • 1986
  • The aroma component analysis of raw and cooked Korean edible mushroom (Trichloma matsutake) by GC, GC-MS is as follows; 1) The volatile aroma component of raw mushroom is identified as 13 kinds, and among them, 4 kinds of aroma component such as 1-octene-3-ol (73.95%), methyl cinnamate (12.52%), 2-octanol (7.62%) and octyl alcohol (2.78%)-consists 95.87% of total aroma component 2) Meanwhile, The volatilearoma component of cooked one is identified as 9 kinds and 4 of them-1-octen-3-ol (64.94%), methyl cinnamate (22.03%), 2-octanol (7.68%), and octyl alcohol (3.31%)-consists 89.61% of total aroma component. 3) The major composition of aroma component of both raw cooked ones are carbonyl compounds and alcohols. Their number of carbons is $C_8$ short chain aliphatic compounds.

  • PDF

Studies on the Volatile aroma Components of Edible mushroom (Pleurotus Ostreatus) of Korea (한국산(韓國産) 식용(食用)버섯의 향기성분(香氣成分)에 관(關)한 연구(硏究) (II) -느타리버섯의 향기성분(香氣成分)-)

  • Ahn, Jang-Soo;Lee, Kyu-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.3
    • /
    • pp.258-262
    • /
    • 1986
  • The aroma component analysis of raw and cooked Korean edible mushroom (pleurotus ostreatus) by GC, GC-MS is as follows; 1) The volatile aroma component of raw mushroom is identified such as 3-octanol (46.01%), 3-octanone (18.75%), 1-octen-3-01 (15.39%), isobutyl alcohol (3.48%), and isoamyl alcohol (3.07%) consists 89.04% of total aroma component. 2) Meanwhile, the volatile aroma component of cooked one is identified as 16 kinds and six of them 1-octen-3-ol (66.50%), 3-octanol (10.99%), 3-octanone (9.77%), 1-octene-3-one (1.23%), octyl alcohol (1.12%), and octanol (0.96%) consists 89.61% of total aroma component. 3) The major compositions of aroma component of both raw and cooked ones carbonyl compounds and alcohols. Their number of carbons are $C_2-C_8$ short chain aliphatic compounds

  • PDF

Aroma Characteristics of Neungee(Sarcodon aspratus) (능이버섯의 향기특성)

  • Jeong, Ok-Jin;Yoon, Hyang-Sik;Min, Young-Kyoo
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.307-312
    • /
    • 2001
  • Flavor compounds in Neungee (sarcodon aspratus) were extracted by simutaneous distillation and extraction (SDE), supercritical fluid extraction (SFE) and headspace method. Flavor compounds obtained by various extraction methods were analyzed with GC and GC-MS. The funtionality of flavor compounds were determined by aroma extract dilution analysis (AEDA) of GC-ofactometry methods. Fifty one flavor compounds were totally identified in Neungee mushroom. However, the numbers of flavor extracted SDE, SFE and headspace were 33, 26 and 17 respectively. The major flavor compounds obtained by SDE, SFE and headspace were 1-octen-3-ol, 1-octen-3-one, 3-octanone, 2-octen-1-ol, 3-octanol, 1-octanol and benzenealdehyde. As the results of sniffing test, the major flavor compounds were found to be fresh mushroom flavor, wood flavor, refreshing sweet flavor, mold flavor, bitter-mushroom and metalic-flavor.

  • PDF

Volatile Compounds of Elsholtzia splendens (꽃향유의 휘발성 향기성분)

  • Lee, So-Young;Chung, Mi-Sook;Kim, Mi-Kyung;Baek, Hyung-Hee;Lee, Mi-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.339-344
    • /
    • 2005
  • Volatile compounds, isolated from Elsholtzia splendens using simultaneous steam distillation extraction (SDE) and headspace solid phase microextraction (HS-SPME), were analyzed by gas chromatography/mass spectrometry(GC-MS). Twenty-nine compounds, comprising 3 aldehydes, 7 alcohols, 11 hydrocarbons, 5 ketones, and 3 miscellaneous ones, were tentatively identified from volatile compounds of Elsholtzia splendens flowers. From leaves, 30 compounds, comprising 3 aldehydes, 6 alcohols, 11 hydrocarbons, 6 ketones, and 11 miscellaneous ones, were tentatively identified. Volatile compounds extracted by HS-SPME in E. splendens flowers were 3 alcohols, 18 hydrocarbons, 3 ketones, and 2 miscellaneous ones. In leaves, 31 compounds, comprising 7 alcohols, 15 hydrocarbons, 7 ketones, and 2 miscellaneous ones, were tentatively identified. Major volatile compounds identified by SDE and HS-SPME were naginataketone and elsholtziaketone, which were identified as aroma-active compounds, representing characteristic aroma of E. splendens.

Character Impact Compounds in Flavors of Korean Soy Sauce Manufactured with the Traditional and the Improved Meju

  • Kim, Jong-kyu;Chang, Ho-Geun;Seo, Jae-Soon
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.4
    • /
    • pp.270-276
    • /
    • 1993
  • We characterized the character impact compounds of flavors of the fermented Korean soy sauce manufactured with both the traditional and the improved Meju made with different strains. The whole flavor samples were obtained by extracting each volatile flavor phase from both the traditional and the improved soy sauce. To get more detailed information, each whole volatile flavor was further fractionated into the basic, acidic, phenolic and neutral fractions. Each separated peak from the whole and fractionated flavor samples on gas chromatogram was identified by GC/MS and Kovat s retention index, and likewise the aroma of each peak was investigated by a sniffing test with the exercised panel. We were able to identify 15 groups of ingredients with the characteristic soy sauce aroma from the soy sauce made with the traditional Meju and 6 groups from the soy sauce manufactured with the improved Meju made with Aspergillus oryzae. The character impact compounds the two soy sauces were different from each other.

  • PDF

Characteristic Impact Odorants of Changpo (Acorus calamus var. angustatus Bess) Root Essential Oil

  • Choi, Hyang-Sook
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.450-455
    • /
    • 2005
  • This study was conducted to determine firstly the composition of the essential oil from fresh changpo (Acorus calamus var. angustatus Bess) roots quantitatively and qualitatively by use of two internal standards, and secondly volatile compounds which are primarily responsible for the aroma of changpo roots. Simultaneous steam distillation and extraction method was used for essential oil extraction, and aroma extract dilution analysis (AEDA) and sniffing test by gas chromatography/olfactometry (GC/O) were used to detect the characteristic impact odorants. According to the instrumental analysis of changpo root essential oil, cis, trans-famesol (47.56 mg/kg of fresh wt), octanoic acid (23.73 mg/kg of fresh wt), trans-2-dodecenal (20.28 mg/kg of fresh wt) and trans, trans-farnesol (13.81 mg/kg of fresh wt) were the most abundant compounds. Geranyl acetate, trans-nerolidol and trans, trans-farnesyl acetate were evaluated as the characteristic impact odorants of changpo roots from results of AEDA and sniffing test. Especially, geranyl acetate was considered as the most similar odor component to changpo roots by organoleptic evaluation with GC/O.

Aroma Characteristics of Pholiota adiposa (Geumbongi) with Different Drying Methods (건조방법에 따른 검은비늘버섯의 향기특성)

  • Yoon, Hyang-Sik;Oh, Eun-Hee;Joo, Seon-Jong;Kim, Ki-Sik;Jeong, Eun-Kyeong;Chang, Who-Bong;Kim, Sook-Jong
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.553-557
    • /
    • 2004
  • Aroma compounds in Pholiota adiposa were extracted by simultaneous distillation and extraction (SDE), and 41 compounds were identified by GC-MS, including eleven alcohols, eight aldehydes, four esters, four ketones, nine alkans, and five miscellaneous compounds. Major aroma compounds included hexanal (8.55%), n-heptaldehyde (13.02%), 2-pentyl furan (4.82%), benzeneacetaldehyde (3.34%), (E,Z)-2,4-decadienal (3.06%), and hexacosane(5.04%). Drying method was applied to aroma compounds of Pholiota adiposa extracted by solid phase microextraction and identified by GC-MS. As hot air-drying temperature increased, peak areas (%) of 2-phenylethanol and benzeneacetaldehyde decreased, whereas those of 2(5H)-furanone (0.16%), 2H-1-benzopyran-2-one (7.63%), 2-acetylpyrrole (5.49%), and 4-phenyl-pyridine (5.61%) increased significantly at $70^{\circ}C$.

Rheological, Physicochemical, Microbiological, and Aroma Characteristics of Sour Creams Supplemented with Milk Protein Concentrate

  • Chan Won Seo;Nam Su Oh
    • Food Science of Animal Resources
    • /
    • v.43 no.3
    • /
    • pp.540-551
    • /
    • 2023
  • Milk protein concentrate (MPC) is widely used to enhance the stability and texture of fermented dairy products. However, most research has focused on yogurt products, and the effects of MPC on sour cream characteristics remain unknown. Therefore, we investigated the effects of different MPC levels (0%, 1%, 2%, and 3% w/w) on the rheological, physicochemical, microbiological, and aroma characteristics of sour creams in this study. We found that MPC supplementation stimulated the growth of lactic acid bacteria (LAB) in sour creams, resulting in higher acidity than that in the control sample due to the lactic acid produced by LAB. Three aroma compounds, acetaldehyde, diacetyl, and acetoin, were detected in all sour cream samples. All sour creams showed shear-thinning behavior (n=0.41-0.50), and the addition of MPC led to an increase in the rheological parameters (ηa,50, K, G', and G"). In particular, sour cream with 3% MPC showed the best elastic property owing to the interaction between denatured whey protein and caseins. In addition, these protein interactions resulted in the formation of a gel network, which enhanced the water-holding capacity and improved the whey separation. These findings revealed that MPC can be used as a supplementary protein to improve the rheological and physicochemical characteristics of sour cream.