• Title/Summary/Keyword: artificial neural network

Search Result 3,031, Processing Time 0.026 seconds

Artificial Neural Network Models in Prediction of the Moisture Content of a Spray Drying Process

  • Taylan, Osman;Haydar, Ali
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.353-358
    • /
    • 2004
  • Spray drying is a unique drying process for powder production. Spray dried product must be free-flowing in order to fill the pressing dies rapidly, especially in the ceramic production. The important powder characteristics are; the particle size distribu-tion and moisture content of the finished product that can be estimated and adjusted by the spray dryer operation, within limits, through regulation of atomizer and drying conditions. In order to estimate the moisture content of the resultant dried product, we modeled the control system of the drying process using two different Artificial Neural Network (ANN) approaches, namely the Back-Propagation Multiplayer Perceptron (BPMLP) algorithm and the Radial Basis Function (RBF) network. It was found out that the performance of both of the artificial neural network models were quite significant and the total testing error for the 100 data was 0.8 and 0.7 for the BPMLP algorithm and the RBF network respectively.

An Efficient and Accurate Artificial Neural Network through Induced Learning Retardation and Pruning Training Methods Sequence

  • Bandibas, Joel;Kohyama, Kazunori;Wakita, Koji
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.429-431
    • /
    • 2003
  • The induced learning retardation method involves the temporary inhibition of the artificial neural network’s active units from participating in the error reduction process during training. This stimulates the less active units to contribute significantly to reduce the network error. However, some less active units are not sensitive to stimulation making them almost useless. The network can then be pruned by removing the less active units to make it smaller and more efficient. This study focuses on making the network more efficient and accurate by developing the induced learning retardation and pruning sequence training method. The developed procedure results to faster learning and more accurate artificial neural network for satellite image classification.

  • PDF

An application of neural network analysis in diagnosis of mechanical failure of a total artificial heart

  • Park, Seong-Keun;Choi, Won-Woo;Min, Byoung-Goo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.500-504
    • /
    • 1995
  • A neural network based upon the back propagation algorithm was designed and applied to acoustic power spectra of electrohydraulic total artificial hearts in order to diagnose mechanical failure of devices. The trained network distinguished spectra of the mechanically damaged device from those of the undamaged device with overall success rate of 63%. Moreover, the network correctly classified more than 70% of spectra in the frequency bands of 0-100 Hz and 700-950 Hz. Consequently, the neural network analysis was useful for the diagnosis of mechanical failure of a total artificial heart.

  • PDF

Artificial Neural Network: Understanding the Basic Concepts without Mathematics

  • Han, Su-Hyun;Kim, Ko Woon;Kim, SangYun;Youn, Young Chul
    • Dementia and Neurocognitive Disorders
    • /
    • v.17 no.3
    • /
    • pp.83-89
    • /
    • 2018
  • Machine learning is where a machine (i.e., computer) determines for itself how input data is processed and predicts outcomes when provided with new data. An artificial neural network is a machine learning algorithm based on the concept of a human neuron. The purpose of this review is to explain the fundamental concepts of artificial neural networks.

Analysis and Orange Utilization of Training Data and Basic Artificial Neural Network Development Results of Non-majors (비전공자 학부생의 훈련데이터와 기초 인공신경망 개발 결과 분석 및 Orange 활용)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.381-388
    • /
    • 2023
  • Through artificial neural network education using spreadsheets, non-major undergraduate students can understand the operation principle of artificial neural networks and develop their own artificial neural network software. Here, training of the operation principle of artificial neural networks starts with the generation of training data and the assignment of correct answer labels. Then, the output value calculated from the firing and activation function of the artificial neuron, the parameters of the input layer, hidden layer, and output layer is learned. Finally, learning the process of calculating the error between the correct label of each initially defined training data and the output value calculated by the artificial neural network, and learning the process of calculating the parameters of the input layer, hidden layer, and output layer that minimize the total sum of squared errors. Training on the operation principles of artificial neural networks using a spreadsheet was conducted for undergraduate non-major students. And image training data and basic artificial neural network development results were collected. In this paper, we analyzed the results of collecting two types of training data and the corresponding artificial neural network SW with small 12-pixel images, and presented methods and execution results of using the collected training data for Orange machine learning model learning and analysis tools.

Multiple Fault Diagnosis Method by Modular Artificial Neural Network (모듈신경망을 이용한 다중고장 진단기법)

  • 배용환;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.35-44
    • /
    • 1998
  • This paper describes multiple fault diagnosis method in complex system with hierarchical structure. Complex system is divided into subsystem, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. We introduced Modular Artificial Neural Network(MANN) for this purpose. MANN consists of four level neural network, first level for symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. Each network is multi layer perceptron with 7 inputs, 30 hidden node and 7 outputs trained by backpropagation. UNIX IPC(Inter Process Communication) is used for implementing MANN with multitasking and message transfer between processes in SUN workstation. We tested MANN in reactor system.

  • PDF

Load Prediction using Finite Element Analysis and Recurrent Neural Network (유한요소해석과 순환신경망을 활용한 하중 예측)

  • Jung-Ho Kang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.151-160
    • /
    • 2024
  • Artificial Neural Networks that enabled Artificial Intelligence are being used in many fields. However, the application to mechanical structures has several problems and research is incomplete. One of the problems is that it is difficult to secure a large amount of data necessary for learning Artificial Neural Networks. In particular, it is important to detect and recognize external forces and forces for safety working and accident prevention of mechanical structures. This study examined the possibility by applying the Current Neural Network of Artificial Neural Networks to detect and recognize the load on the machine. Tens of thousands of data are required for general learning of Recurrent Neural Networks, and to secure large amounts of data, this paper derives load data from ANSYS structural analysis results and applies a stacked auto-encoder technique to secure the amount of data that can be learned. The usefulness of Stacked Auto-Encoder data was examined by comparing Stacked Auto-Encoder data and ANSYS data. In addition, in order to improve the accuracy of detection and recognition of load data with a Recurrent Neural Network, the optimal conditions are proposed by investigating the effects of related functions.

Modeling of Strength of High Performance Concrete with Artificial Neural Network and Mahalanobis Distance Outlier Detection Method (신경망 이론과 Mahalanobis Distance 이상치 탐색방법을 이용한 고강도 콘크리트 강도 예측 모델 개발에 관한 연구)

  • Hong, Jung-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.122-129
    • /
    • 2010
  • High-performance concrete (HPC) is a new terminology used in concrete construction industry. Several studies have shown that concrete strength development is determined not only by the water-to-cement ratio but also influenced by the content of other concrete ingredients. HPC is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed at demonstrating the possibilities of adapting artificial neural network (ANN) to predict the comprresive strength of HPC. Mahalanobis Distance (MD) outlier detection method used for the purpose increase prediction ability of ANN. The detailed procedure of calculating Mahalanobis Distance (MD) is described. The effects of outlier compared with before and after artificial neural network training. MD outlier detection method successfully removed existence of outlier and improved the neural network training and prediction performance.

Vehicle Dynamic Simulation Including an Artificial Neural Network Bushing Model

  • Sohn, Jeong-Hyun;Baek-Woon-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.255-264
    • /
    • 2005
  • In this paper, a practical bushing model is proposed to improve the accuracy of the vehicle dynamic analysis. The results of the rubber bushing are used to develop an empirical bushing model with an artificial neural network. A back propagation algorithm is used to obtain the weighting factor of the neural network. Since the output for a dynamic system depends on the histories of inputs and outputs, Narendra algorithm of 'NARMAX' form is employed to consider these effects. A numerical example is carried out to verify the developed bushing model. Then, a full car dynamic model with artificial neural network bushings is simulated to show the feasibility of the proposed bushing model.

Evaluation of Thermal Embrittlement Susceptibility in Cast Austenitic Stainless Steel Using Artificial Neural Network (인공신경망을 이용한 주조 스테인리스강의 열취화 민감도 평가)

  • Kim, Cheol;Park, Heung-Bae;Jin, Tae-Eun;Jeong, Ill-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1174-1179
    • /
    • 2003
  • Cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. This study shows that ferrite content can be predicted by use of the artificial neural network. The neural network has trained learning data of chemical components and ferrite contents using backpropagation learning process. The predicted results of the ferrite content using trained neural network are in good agreement with experimental ones.

  • PDF