• Title/Summary/Keyword: asphalt layer division

Search Result 11, Processing Time 0.018 seconds

Development of Multi Layered Elastic Pavement Analysis Program Package Considering Temperature Nonlinearty of Asphalt Layer on GUI Environment (아스팔트층 온도 비선형성을 고려한 사용자 편의환경의 다층탄성 프로그램 개발)

  • Choi, Jun-Seong;Seo, Joo-Won;Park, Keun-Bo;Kim, Soo-Il
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.91-101
    • /
    • 2008
  • A multi layered elastic analysis program, IDYSPAP, was developed. The objective of this study was to develop the IDYSPAP program on Graphic User Interface environment for field engineers using Visual Basic, which was considered span of multi-wheels and maximum 4 axles using superposition of linear elastic theorem. It is suggested that this study considers algorithm with dynamic properties of asphalt layer on various temperature and non-linear properties of subbase and subgrade on stress non-linearity for asphalt pavement structure. This Program was modified to divide asphalt layer automatically according to layer division concept. The developed program was verified with initial measuring data in test road sections of KEC (Korea Expressway Co.) using laboratory test results.

  • PDF

Construction Management Method for Asphalt Paving Using Ground Penetrating Radar and an Infrared Camera (지표투과레이더와 적외선카메라를 이용한 아스팔트 포장 시공 관리 방법)

  • Baek, Jongeun;Park, Hee Mun;Yoo, Pyung Jun;Im, Jae Kyu
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.1-9
    • /
    • 2015
  • PURPOSES : The objective of this study is to propose a quality control and quality assurance method for use during asphalt pavement construction using non-destructive methods, such as ground penetrating radar (GPR) and an infrared (IR) camera. METHODS : A 1.0 GHz air-coupled GPR system was used to measure the thickness and in situ density of asphalt concrete overlay during the placement and compaction of the asphalt layer in two test construction sections. The in situ density of the asphalt layer was estimated based on the dielectric constant of the asphalt concrete, which was measured as the ratio of the amplitude of the surface reflection of the asphalt mat to that of a metal plate. In addition, an IR camera was used to monitor the surface temperature of the asphalt mat to ensure its uniformity, for both conventional asphalt concrete and fiber-reinforced asphalt (FRA) concrete. RESULTS : From the GPR test, the measured in situ air void of the asphalt concrete overlay gradually decreased from 12.6% at placement to 8.1% after five roller passes for conventional asphalt concrete, and from 10.7% to 5.9% for the FRA concrete. The thickness of the asphalt concrete overlay was reduced from 7.0 cm to 6.0 cm for the conventional material, and from 9.2 cm to 6.4 cm for the FRA concrete. From the IR camera measurements, the temperature differences in the asphalt mat ranged from $10^{\circ}C$ to $30^{\circ}C$ in the two test sections. CONCLUSIONS : During asphalt concrete construction, GPR and IR tests can be applicable for monitoring the changes in in situ density, thickness, and temperature differences of the overlay, which are the most important factors for quality control. For easier and more reliable quality control of asphalt overlay construction, it is better to use the thickness measurement from the GPR.

Estimation of Air Voids of Asphalt Concrete Using Non-destructive Density Testing (비파괴 밀도시험을 통한 아스팔트 콘크리트의 공극률 추정 연구)

  • Na, Il-ho;Lee, Sung-Jin;Yoon, Ji-Hyeon;Kim, Kwang-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.111-119
    • /
    • 2018
  • The air-void is known to be one of the influencing factors for estimating long-term performance of asphalt concrete. Most of all, confirming air void or density of pavement layer is important for quality control of field compaction level of asphalt concrete pavement. In this study, a non-nuclear type non-destructive density gage (NDDG) was used to estimate compacted air-voids of asphalt pavement as a non-destructive test method. Asphalt concrete slab specimens were prepared using 6 types of asphalt mixes in laboratory (lab) for lab NDDG test. Four different base structure materials were used to find out if there were any differences due to the type of base structure materials. The actual air-voids and NDDG air-voids were measured from 6 asphalt concrete slabs. Four sections of field asphalt pavements were tested using the NDDG, and actual air voids were also measured from field cores taken from the site where the NDDG air-void was measured. From lab and field experimental tests, it was found that the air-voids obtained by NDDG were not the same as the actual air-voids measured from the asphalt concrete specimen. However, it was possible to estimate air voids based on the relationship obtained from regression analysis between actual and NDDG air voids. The predicted air-voids based on the NDDG air-voids obtained from 50mm depth were found to be reliable levels with $R^2{\fallingdotseq}0.9$. Therefore, it was concluded that the air-voids obtained from NDDG could be used to estimate actual air-voids in the field asphalt pavement with a relatively high coefficient of determination.

Heat Transfer Analysis for Asphalt Mixture Temperature Variation due to Wind Speed (풍속에 따른 포설 아스팔트 혼합물의 온도변화에 대한 열전달 해석)

  • Yun, Tae Young;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.33-40
    • /
    • 2015
  • PURPOSES: Evaluation of the wind speed effect on the temperature drop of an asphalt mixture during construction, by using the transient heat transfer theory and dominant convective heat transfer coefficient model. METHODS: Finite difference method (FDM) is used to solve the transient heat transfer difference equation numerically for various wind speeds and initial temperature conditions. The Blasius convective heat transfer coefficient model is adapted to account for the effect of wind speed in the temperature predictions of the asphalt mixture, and the Beaufort number is used to select a reasonable wind speed for the analysis. As a function of time and depth, the temperature of the pavement structure is predicted and analyzed for the given initial conditions. RESULTS : The effect of wind speed on the temperature drop of asphalt mixture is found to be significant. It seems that wind speed is another parameter to be accounted for in the construction specifications for obtaining a better quality of the asphalt mixture. CONCLUSIONS: It is concluded that wind speed has a significant effect on the temperature drop of the asphalt layer. Although additional field observations have to be made to reflect the effect of wind speed on the construction specifications, it appears that wind speed is a dominant variable to be considered, in addition to the atmospheric temperature.

Theoretical Study on Snow Melting Process on Porous Pavement System by using Heat and Mass Transfer (열전달 및 물질전달을 이용한 공극 발열도로에서의 융설 해석에 대한 이론적 연구)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.1-10
    • /
    • 2015
  • PURPOSES : A finite difference model considering snow melting process on porous asphalt pavement was derived on the basis of heat transfer and mass transfer theories. The derived model can be applied to predict the region where black-ice develops, as well as to predict temperature profile of pavement systems where a de-icing system is installed. In addition, the model can be used to determined the minimum energy required to melt the ice formed on the pavement. METHODS : The snow on the porous asphalt pavement, whose porosity must be considered in thermal analysis, is divided into several layers such as dry snow layer, saturated snow layer, water+pavement surface, pavement surface, and sublayer. The mass balance and heat balance equations are derived to describe conductive, convective, radiative, and latent transfer of heat and mass in each layer. The finite differential method is used to implement the derived equations, boundary conditions, and the testing method to determine the thermal properties are suggested for each layer. RESULTS: The finite differential equations that describe the icing and deicing on pavements are derived, and we have presented them in our work. The framework to develop a temperature-forecasting model is successfully created. CONCLUSIONS : We conclude by successfully creating framework for the finite difference model based on the heat and mass transfer theories. To complete implementation, laboratory tests required to be performed.

Performance of Constructed Facilities: Pavement Structural Evaluation of William P Hobby Airport in Houston, Texas

  • Kim, Sung-Hee;Jeong, Jin-Hoon;Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.21-25
    • /
    • 2009
  • The results of a recent case study for material characterizations and structural evaluation to design asphalt overlay thickness of William P Hobby airport in Houston, Texas are presented herein. The existing runway 12R-30L of Hobby airport consisted of thick asphalt overlay over Portland Cement Concrete (PCC) and the localized surface shoving as evident in the closure of surface groove has been observed recently. Using the field cored asphalt concrete mixtures, measurements of percent air voids, asphalt content and aggregate gradation were conducted to find out the causations of surface shoving and groove closure. The FAA layered elastic program, LEDFAA was utilized to evaluate pavement structural conditions for new asphalt overlay. Two different composition assumptions for existing pavement were made to evaluate the pavement as followings: 1) APC, Asphalt Concrete Overlay over PCC pavement and 2) AC, Asphalt Concrete pavement. Based on laboratory testing results, a ratio of percent passing #200 to asphalt content ranged 1.1 to 2.2, which is considered a high ratio and a tendency of tender mix design was observed. Thus, the localized surface shoving and groove closure of the runway 12R-30L could be attributed to the use of excessive fine contents and tender mix design. Based on the structural evaluation results, it was ascertained that the analysis assuming the pavement structure as AC pavement gives more realistic structural life when the asphalt overlay is thicker enough compared to PCC layer because the existing PCC pavement under asphalt overlay acts more like a high quality base material.

Cost Analysis of Modified Asphalts using a Performance Based Fracture Criterion (공용성에 근거한 파괴기준을 이용한 개질 아스팔트 포장의 비용 효과 분석)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.49-56
    • /
    • 2005
  • The effect of modified asphalts is evaluated by simple comparison of a single parameter (i.e., tensile strength, stiffness, etc.) between modified asphalt mixture and unmodified mixture. The use of a single parameter to evaluate the effect of modified asphalt must be questioned. Rather, a single unified framework that accounts for changes in key mixture properties is needed to effectively evaluate the modified asphalt mixtures. This study used a new performance-based fracture parameter as a single unified framework, the Energy Ratio (ER), for quantifying the effect of modified asphalts oil the fracture resistance of mixtures. The Energy Ratio was then used as a performance criterion for calculating the construction cost of two modified asphalt pavements (SBS and Crumb Rubber) and unmodified asphalt pavement. The results showed that the Energy Ratio of SBS modified asphalt was higher than those of crumb rubber and unmodified asphalt. Cost analyses indicated that the construction cost of the AC layer would be reduced by up to 24% by SBS modification. Based on the results, the Energy Ratio is capable of evaluating the effect of modified mixtures, and may form the basis of a promising fracture criterion for performance-based thickness design in asphalt pavements.

  • PDF

Evaluation of Optimum Contents of Hydrated-Lime and Anti-Freezing Agent for Low-Noise Porous Asphalt Mixture considering Moisture Resistance (수분민감성 관련 소석회 및 박리방지제 첨가 투수성 가열 아스팔트 혼합물의 최적 함량 평가)

  • Kim, Dowan;Lee, Sangyum;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.123-130
    • /
    • 2016
  • OBJECTIVES : The objective of this research is to determine the moisture resistance of the freeze-thaw process occurring in low-noise porous pavement using either hydrated-lime or anti-freezing agent. Various additives were applied to low-noise porous asphalt, which is actively paved in South Korea, to overcome its disadvantages. Moreover, the optimum contents of hydrated-lime and anti-freezing agent and behavior properties of low-noise porous asphalt layer are determined using dynamic moduli via the freeze-thaw test. METHODS : The low-noise porous asphalt mixtures were made using gyratory compacters to investigate its properties with either hydrated-lime or anti-freezing agent. To determine the dynamic moduli of each mixture, impact resonance test was conducted. The applied standard for the freeze-thaw test of asphalt mixture is ASTM D 6857. The freeze-thaw and impact resonance tests were performed twice at each stage. The behavior properties were defined using finite element method, which was performed using the dynamic modulus data obtained from the freeze-thaw test and resonance frequencies obtained from non-destructive impact test. RESULTS : The results show that the coherence and strength of the low-noise porous asphalt mixture decreased continuously with the increase in the temperature of the mixture. The dynamic modulus of the normal low-noise porous asphalt mixture dramatically decreased after one cycle of freezing and thawing stages, which is more than that of other mixtures containing additives. The damage rate was higher when the freeze-thaw test was repeated. CONCLUSIONS : From the root mean squared error (RMSE) and mean percentage error (MPE) analyses, the addition rates of 1.5% hydrated-lime and 0.5% anti-freezing agent resulted in the strongest mixture having the highest moisture resistance compared to other specimens with each additive in 1 cycle freeze-thaw test. Moreover, the freeze-thaw resistance significantly improved when a hydrated-lime content of 0.5% was applied for the two cycles of the freeze-thaw test. Hence, the optimum contents of both hydrated-lime and anti-freezing agent are 0.5%.

Evaluation of Interlayer Shear Properties and Bonding Strengths of a Stress-Absorbing Membrane Interlayer and Development of a Predictive Model for Fracture Energy (덧씌우기 응력흡수층에 대한 전단, 부착강도 평가 및 파괴에너지 예측모델 개발)

  • Kim, Dowan;Mun, Sungho;Kwon, Ohsun;Moon, Kihoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.87-95
    • /
    • 2018
  • PURPOSES : A geo-grid pavement, e.g., a stress-absorbing membrane interlayer (SAMI), can be applied to an asphalt-overlay method on the existing surface-pavement layer for pavement maintenance related to reflection cracking. Reflection cracking can occur when a crack in the existing surface layer influences the overlay pavement. It can reduce the pavement life cycle and adversely affect traffic safety. Moreover, a failed overlay can reduce the economic value. In this regard, the objective of this study is to evaluate the bonding properties between the rigid pavement and a SAMI by using the direct shear test and the pull-off test. The predicted fractural energy functions with the shear stress were determined from a numerical analysis of the moving average method and the polynomial regression method. METHODS : In this research, the shear and pull-off tests were performed to evaluate the properties of mixtures constructed using no interlayer, a tack-coat, and SAMI with fabric and without fabric. The lower mixture parts (describing the existing pavement) were mixed using the 25-40-8 joint cement-concrete standard. The overlay layer was constructed especially using polymer-modified stone mastic asphalt (SMA) pavement. It was composed of an SMA aggregate gradation and applied as the modified agent. The sixth polynomial regression equation and the general moving average method were utilized to estimate the interlayer shear strength. These numerical analysis methods were also used to determine the predictive models for estimating the fracture energy. RESULTS : From the direct shear test and the pull-off test results, the mixture bonded using the tack-coat (applied as the interlayer between the overlay layer and the jointed cement concrete) had the strongest shear resistance and bonding strength. In contrast, the SAMI pavement without fiber has a strong need for fractural energy at failure. CONCLUSIONS : The effects of site-reflection cracking can be determined using the same tests on cored specimens. Further, an empirical-mechanical finite-element method (FEM) must be done to understand the appropriate SAMI application. In this regard, the FEM application analy pavement-design analysis using thesis and bonding property tests using cored specimens from public roads will be conducted in further research.

Development of Moisture Loss Index Based on Field Moisture Measurement using Portable Time Domain Reflectometer (TDR) for Cold In-place Recycled Pavements (휴대용 TDR 함수량계로 측정한 현장 함수비를 이용한 현장 상온 재활용 아스팔트 포장의 수분 감소계수 개발)

  • Kim, Yong-Joo;Lee, Ho-Sin David;Im, Soo-Hyok
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.139-145
    • /
    • 2011
  • The practice of asphalt pavement recycling has grown rapidly over the decade, one of which is the cold in-place recycling with the foamed asphalt (CIR-foam) or the emulsified asphalt (CIR-emulsion). Particularly, in Iowa, the CIR has been widely used in rehabilitating the rural highways because it significantly increases the service life of the existing pavement. The CIR layer is typically overlaid by the hot mix asphalt (HMA) to protect it from water ingress and traffic load and obtain the required pavement structure and texture. Most public agencies have different curing requirements based on the number of curing days or the maximum moisture contents for the CIR before placing the overlay. The main objective of this study is to develop a moisture loss index that the public agency can use to monitor the moisture content of CIR layers in preparation for a timely placement of the wearing surface. First, the moisture contents were measured in the field using a portable time domain reflectometry (TDR) device. Second, the weather information in terms of rain fall, air temperature, humidity and wind speed was collected from the same location. Finally, a moisture loss index was developed as a function of initial moisture content, air temperature, humidity and wind speed. The developed moisture loss index based on the field measurements would help the public agency to determine an optimum timing of an overlay placement without continually measuring moisture conditions in the field.