• Title/Summary/Keyword: assembling tolerance

Search Result 28, Processing Time 0.038 seconds

Effect on the Compliance of Spindle -Bearing System by the Assembling Tolerance (축-베어링계의 컴플라이언스 특성에 미치는 조립공차의 영향)

  • 이강재;서장력;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.995-999
    • /
    • 1995
  • In spindle-bearing system, the displacement characteristics of the bearing by the load applied on the spindle are affected greatly by the assembling tolerance between the spindle and housing assembled to support the bearing. Also in spindle system of rotational operation, the compliance characteristic of the bearing is expected to be varied frequently by the thermal deformation of the spindle and the housing. To predict the thermal deformation of the spindle including heat generation of the bearing, we need to examine the effect on the compliance of spindle-bearing system by the assembling tolerance. In this paper, we proposed the load-displacement relation expression considering the effect which the variation of contact pressure due to the radial directional assembling tolerance between the bearing and the housing influences on the axial and radial directional displacement characteristics of the bearing. Furthermore, for several assembling systems of bearings and housings having all different assembling tolerances, we proposed a method to predict exactly the variation of the bearing preload which is sensitive to the thermal deformation by showing the propriety with experimental results.

  • PDF

Analysis of Assembling Tolerance of Optical Components in NFR System (NFR 시스템 헤드의 광 부품 조립 정밀도 분석)

  • 오형렬;권대갑;이준희;윤형길;김진용;김수경;김영식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.718-721
    • /
    • 2001
  • For higher recording density in optical data storage, near field optics is being actively researched as one of the promising alternatives. But the tight assembling tolerance in NFR is one of big barriers to overcome for the realization of it. In this paper, the tolerances in assembling optic components of NFR system are analyzed. Some of key tolerances can be loosened by the optimization of objective lens design. But one of them become too tight by the optimization and should be controlled by other means. One of possible methods to control the tolerance is discussed.

  • PDF

Research on the Assembling Process of 7 tonf Class Small Liquid Rocket Engines (7 tonf 급 소형 액체로켓엔진 조립 체계 연구)

  • Moon, In Sang;Moon, Il Yoon;Jeong, Eun Hwan;Park, Soon Young
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.48-53
    • /
    • 2017
  • Liquid rocket engines (LREs) are very complex systems that include combustion chambers, turbopumps, gas generators, ducts and tubes, valves and etc. Most components of the LREs require higher than or equal to level 6 IT (ISO Tolerance). The components along with pipe line and/or tubing must dispose not to interfere each other. In addition, effectiveness of maintenance and service after assembling should be considered when the allocation of the components are determined. Especially at the stage of the development, tolerance accumulations or unpredictable errors may result in misalignment and/or mismatches at interfaces of the parts. Namely, it is the engine assembling process that many inherent risks are realized and crises or incidents occur. Therefore, a rapid reaction system should be prepared. In this research, 7 tonf class liquid rocket assembling process was studied and actual building steps were introduced.

Lens Assembling Methods for Near Field Optical Storage Devices (근접장 광 저장 장치를 위한 렌즈 조립)

  • Shin Yun Sup;Park Jin Moo;Lee Jeong Uk;Jeong Mi Hyun;Seo Jeong Kyo;Choi In Ho
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.2-3
    • /
    • 2005
  • Air gap control method using a conventional actuator for near field recording technology has been reported. To achieve good performance in the air gap servo and further experiments, the assembling between OL and SIL is the critical procedure. A lens set with NA 1.45 at 405 m has been assembled and tested by using a Twyman-Green interferometer. The tolerance of assembling is very tight and the designing and adjusting procedure must be carefully controlled.

  • PDF

A Study on the Optimization of Position Tolerance of Fasteners Considering Process Capability (공정능력을 고려한 체결구 부품의 위치공차 최적화 방법 연구)

  • Lee, Sang-Hyun;Lee, Tae-Gun;Chang, Sung-Ho
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.04a
    • /
    • pp.417-428
    • /
    • 2008
  • Designers have to consider voice of customer, process capability, manufacturing standards & condition, manufacturing method, characteristics of products to decide tolerances. Especially, in case of position of hole and pin, designers have to consider process capability to decide tolerances. The traditional position tolerances used in a drawing are theoretical values which are allocated to position under the worst case assembling condition that both hole and pin are the maximum material condition(MMC). However, When the process capability is high, more exact product size can be produced under stable manufacturing condition. larger clearance of hole and pin can be allocated. In this point of view, manufacturer could increase the yield by allocating larger position tolerance than theoretical position tolerance of hole and pin considering process capability.

  • PDF

A Study on the Optimization of Position Tolerance of Fasteners Considering Process Capability (공정능력을 고려한 체결구 부품의 위치공차 최적화 방법 연구)

  • Lee, Sang-Hyun;Lee, Tae-Geun;Chang, Sung-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.75-85
    • /
    • 2009
  • Designers have to consider voice of customer, process capability, manufacturing standards & condition, manufacturing method and characteristics of products to decide tolerances. Especially, in case of position of hole and pin, designers have to consider process capability to decide tolerances. The traditional position tolerances used in a drawing are theoretical values which are allocated to position under the worst case assembling condition that both hole and pin are the maximum material condition(MMC). However, when the process capability is high, more exact product size can be produced under stable manufacturing condition. Larger clearance of hole and pin can be allocated. In this point of view, manufacturer could increase the yield by allocating larger position tolerance than theoretical position tolerance of hole and pin considering process capability.

Transmission Error Analyis of Spur Gear Trains with Tolerances (기어의 공차에 따른 스퍼 기어열의 전달 오차 해석)

  • Han, Hyung Suk;Kim, Tae Young;Park, Tae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.90-100
    • /
    • 1997
  • Sppur gear trains are used widely in high precision machines because gear trains have an advantage of exact transmission of angular velocity. Especially, gear trains are used in high quali8ty photocopying and photography OA machines. In general, gears have errors in manufacturing and assembling process and the errors are limited by tolerances. As the result, the tolerances cause the performance error. Therfore, it is important to predict transmission error caused by the tolerances for the tolerance design. Earlier tolerance design methods use mainly experimental and geometrical techniques. In this paper, a method for gear train analysis with tolerance is proposed. Because the method uses dynamic contacts, it is possible to consider irregularities and assemble errors of gears. In addition, the method can predit dynamic loads on the teeth of gears.

  • PDF

Error Analysis and Alignment Tolerancing for Confocal Scanning Microscope using Monte Carlo Method (Monte Carlo 방법을 이용한 공초점 주사 현미경의 오차 분석과 정렬 공차 할당에 관한 연구)

  • 유홍기;강동균;이승우;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.92-99
    • /
    • 2004
  • The errors can cause the serious loss of the performance of a precision machine system. In this paper, we proposed the method of allocating the alignment tolerances of the parts and applied this method to get the optimal tolerances of a Confocal Scanning Microscope. In general, tight tolerances are required to maintain the performance of a system, but a high cost of manufacturing and assembling is required to preserve the tight tolerances. The purpose of allocating the optimal tolerances is minimizing the cost while keeping the high performance of the system. In the optimal problem, we maximized the tolerances while maintaining the performance requirements. The Monte Carlo Method, a statistical simulation method, is used in tolerance analysis. Alignment tolerances of optical components of the confocal scanning microscope are optimized to minimize the cost and to maintain the observation performance of the microscope. We can also apply this method to the other precision machine system.

Erection Capability of Heavy Precast Frames with Metal Plates using Wet Concrete for Tolerance (톨러런스기반 플레이트 접합 장치를 사용한 고중량 RC보의 설치 성능)

  • Hong, Won-Kee;Nguyen, Van Tien;Nguyen, Manh Cuong;Nkundimana, Eric
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.12-13
    • /
    • 2021
  • Methods for the manufacture, erection, and assembly of heavy frame modules were proposed. Interferences among precast members were prevented by using bolted metal plates for dry precast beam-to-column joints during assembly with a clearance for tolerance implementing grouted concrete filler plates instead of metal filler plates. Clearances for tolerances were provided to avoid conflictions among components during erection phases. These gaps were, then, grouted by high-strength mortar. The constructability of new connections of a beam-to-column joint using bolted metal plates for precast structures was examined using a full-scale assembly test in which practical observations indicated that members could be aligned and placed accurately in both horizontal and vertical directions, leading to a fast and convenient assembling. Bolt holes of the endplate were properly aligned using couplers with 30 mm fastened length embedded in the columns. The assembly test demonstrated the erection safety and structural stability of the proposed joints that were without filler plates when they were subjected to heavy loads at the time of their erection. The facile and rapid assembly of precast beam-to-column connections with a 30 mm tolerance was observed. The proposed assembly method is rapid, sustainable, and resilient, replacing the conventional methods of concrete frame construction, offering a connection that can be used in constructing infrastructure, such as buildings and pipe-rack frames.

  • PDF

Sensitivity Analysis of the Optical System for UV-IR Space Telescope

  • Kim, Sanghyuk;Chang, Seunghyuk;Pak, Soojong;Jeong, Byeongjoon;Kim, Geon Hee;Hammar, Arvid
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.56.4-57
    • /
    • 2015
  • We present the optical design and a sensitivity analysis for a wide field of view (FOV) instrument operating at UV and IR wavelengths. The ongoing investigation is performed in collaboration with Omnisys Instruments (Sweden) and focuses on a telluric-limb-viewing instrument that will fly in a low Earth orbit to study mesospheric wave structures over a wide range of horizontal scales in the altitude range 80 - 100 km. The instrument has six wavelength channels which consist of 4 channels of IR and 2 of UV. We are proposing an optical design based on three mirror aplanatic off-axis reflective system. The entrance pupil diameter and effective focal length are 45 mm and 270 mm, respectively. The FOV is $5.5^{\circ}{\times}1^{\circ}$ and the secondary mirror is set for stop. The optical specification is required to have an encircled energy of at least 80 % within a diameter of 21 um. We performed sensitivity analysis for the longest wavelength of 772 nm in consideration of the diffraction limit of system. The results show that tolerance limits for positions and angles of the mirrors are not very sensitive compared with typical error budgets of manufacturing and assembling process. The secondary mirror has the most sensitive tolerance for surface figure of 250 nm in root-mean-square.

  • PDF