• 제목/요약/키워드: assumed stress hybrid element

검색결과 20건 처리시간 0.018초

An assumed-stress hybrid element for static and free vibration analysis of folded plates

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.405-421
    • /
    • 2007
  • A four-node hybrid stress element for analysing orthotropic folded plate structures is presented. The formulation is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. The proposed element has six degree of freedom per node and permits an easy connection to other type of elements. An equilibrated stress field in each element and inter element compatible boundary displacement field are assumed independently. Static and free vibration analyses of folded plates are carried out on numerical examples to show that the validity and efficiency of the present element.

An assumed-stress hybrid element for modeling of plates with shear deformations on elastic foundation

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • 제33권5호
    • /
    • pp.573-588
    • /
    • 2009
  • In this paper a four-node hybrid stress element is proposed for analysing arbitrarily shaped plates on a two parameter elastic foundation. The element is developed by combining a hybrid plate stress element and a soil element. The formulation is based on Hellinger-Reissner variational principle in which both inter element compatible boundary displacement and equilibrated stress fields for the plate as well as the foundation are chosen separately. This formulation also allows a low order polynomial interpolation functions. Numerical examples are presented to show that the validity and efficiency of the present element for the plate analysis resting on an elastic foundation. In these examples the effect of soil depth, interaction between closed plates on soil parameters, comparison with Winkler hypothesis is investigated.

Dynamic behaviour of orthotropic elliptic paraboloid shells with openings

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.225-235
    • /
    • 2017
  • In this paper a vibration study on orthotropic elliptic paraboloid shells with openings is carried out by using a hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Natural frequencies of orthotropic elliptic paraboloid shells with and without openings are presented. The influence of aspect ratio, height ratio, opening ratio and material angle on the frequencies and mode shapes are investigated.

Static and free vibration behaviour of orthotropic elliptic paraboloid shells

  • Darilmaz, Kutlu
    • Steel and Composite Structures
    • /
    • 제23권6호
    • /
    • pp.737-746
    • /
    • 2017
  • In this paper the influence of aspect ratio, height ratio and material angle on static and free vibration behaviour of orthotropic elliptic paraboloid shells is studied by using a four-node hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. A parametric study is carried out for static and free vibration response of orthotropic elliptic paraboloid shells with respect to displacements, internal forces, fundamental frequencies and mode shapes by varying the aspect and height ratios, and material angle.

8절점 Hybrid/Mixed 평면응력요소 (Development of an Enhanced 8-node Hybrid/Mixed Plane Stress Element : HQ8-14βElement)

  • 천경식;박원태;임성순
    • 대한토목학회논문집
    • /
    • 제26권2A호
    • /
    • pp.319-326
    • /
    • 2006
  • 본 논문에서는 가정응력장과 수정된 형상함수를 이용한 새로운 8절점 hybrid/mixed 평면응력요소를 제시하였다. 가정응력장은 비적합 변위모드로부터 유도하였으며, 이는 요소의 찌그러짐에 대한 민감도를 완화시켜준다. 그리고 Cartesian 좌표계에서 9절점 등매개변수 요소와 동일한 조건하에서 2차 변위를 정확히 보간하도록 수정한 형상함수를 사용하였다. 제시한 8절점 hybrid/mixed 평면응력요소(HQ8-$14{\beta}$)의 수치해석에 대한 정확성과 효율성을 검증하기 위해 기존의 참고문헌들과 비교, 분석하였다. 그 결과 본 논문에서 제시한 요소는 요소가 왜곡된 경우를 포함하여 우수한 성능을 보였다.

Higher-order assumed stress quadrilateral element for the Mindlin plate bending problem

  • Li, Tan;Qi, Zhaohui;Ma, Xu;Chen, Wanji
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.393-417
    • /
    • 2015
  • In this paper an 8-node quadrilateral assumed stress hybrid Mindlin plate element with $39{\beta}$ is presented. The formulation is based on complementary energy principle. The proposed element is free of shear locking and is capable of passing all the patch tests, especially the non-zero constant shear enhanced patch test. To accomplish this purpose, special attention is devoted to selecting boundary displacement interpolation and stress approximation in domain. The arbitrary order Timoshenko beam function is successfully used to derive the boundary displacement interpolation. According to the equilibrium equations, an appropriate stress approximation is rationally derived. Particularly, in order to improve element's accuracy, the assumed stress field is derived by employing $39{\beta}$ rather than conventional $21{\beta}$. The resulting element can be adopted to analyze both moderately thick and thin plates, and the convergence for the very thin case can be ensured theoretically. Excellent element performance is demonstrated by a wide of experimental evaluations.

Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior

  • Darilmaz, Kutlu
    • Steel and Composite Structures
    • /
    • 제12권4호
    • /
    • pp.275-289
    • /
    • 2012
  • In this paper the influence of stiffener location, rise/span ratio and fibre orientation on vibration behavior of corner supported hypar shells is studied by using a four-node hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Benchmark problems are solved to validate the approach and free vibration response of stiffened orthotropic hypar shells is studied both with respect to fundamental frequency and mode shapes by varying the location of stiffeners, rise/span ratio and fiber orientation.

Static assessment of quadratic hybrid plane stress element using non-conforming displacement modes and modified shape functions

  • Chun, Kyoung-Sik;Kassegne, Samuel Kinde;Park, Won-Tae
    • Structural Engineering and Mechanics
    • /
    • 제29권6호
    • /
    • pp.643-658
    • /
    • 2008
  • In this paper, we present a quadratic element model based on non-conforming displacement modes and modified shape functions. This new and refined 8-node hybrid stress plane element consists of two additional non-conforming modes that are added to the translational degree of freedom to improve the behavior of a membrane component. Further, the modification of the shape functions through quadratic polynomials in x-y coordinates enables retaining reasonable accuracy even when the element becomes considerably distorted. To establish its accuracy and efficiency, the element is compared with existing elements and - over a wide range of mesh distortions - it is demonstrated to be exceptionally accurate in predicting displacements and stresses.

An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • 제19권2호
    • /
    • pp.199-215
    • /
    • 2005
  • An assumed stress quadrilateral thin/moderately thick plate element HQP4 based on the Mindlin/Reissner plate theory is proposed. The formulation is based on Hellinger-Reissner variational principle. Static and free vibration analyses of plates are carried out. Numerical examples are presented to show that the validity and efficiency of the present element for static and free vibration analysis of plates. Satisfactory accuracy for thin and moderately thick plates is obtained and it is free from shear locking for thin plate analysis.

A hybrid 8-node hexahedral element for static and free vibration analysis

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • 제21권5호
    • /
    • pp.571-590
    • /
    • 2005
  • An 8 node assumed stress hexahedral element with rotational degrees of freedom is proposed for static and free vibration analyses. The element formulation is based directly on an 8-node element. This direct formulation requires fewer computations than a similar element that is derived from an internal 20-node element in which the midside degrees of freedom are eliminated by expressing them in terms of displacements and rotations at corner nodes. The formulation is based on Hellinger-Reissner variational principle. Numerical examples are presented to show the validity and efficiency of the present element for static and free vibration analysis.