• Title/Summary/Keyword: austempering

Search Result 80, Processing Time 0.024 seconds

The Effect of Austempering Treatment on Microstructure and Mechanical Properties of NICI and DCI for Rolls Used in Hot Rolling Mill (오스템퍼링 처리가 열간압연롤용 NICI재 및 DCI재의 미세조직 및 기계적 성질에 미치는 영향)

  • Kim, Jae-Jin;Oh, Seok-Jung;Yoo, Kook-Jong;Andy, Tirta;Baek, Eung-Ryul
    • Journal of Korea Foundry Society
    • /
    • v.29 no.6
    • /
    • pp.251-256
    • /
    • 2009
  • The effect of austempering treatment on mechanical properties of nodular indefinite chilled iron(NICI) and ductile cast iron(DCI) was investigated. In microstructural observation, matrix phase(pearlite and ferrite) was changed to ausferrite after austempering treatment both DCI and NICI. In case of NICI, decomposition of cementite($Fe_3C$) during austempering treatment was induced. After austempering treatment, mechanical properties such as hardness, tensile strength and impact toughness was improved in NICI and DCI. The wear resistance is slightly decreased because of decomposition of cementite during austempering treatment in NICI but impact toughness and strength is dramatically increased.

Effect of Austempering Temperature on the Mechanical Properties and Fracture Characteristic of Austemped Ductile Cast Iron (오스템퍼드 구상흑연 주철의 기계적 성질 및 파괴특성에 미치는 오스템퍼링 온도의 영향)

  • Kang, C.Y.;Kim, C.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.298-306
    • /
    • 1994
  • This study was performed to investigation the effect of austempering temperature on the mecanical properties and fracture Characteristic of the ductile cast iron with contains Cu and Mo. The obtained results of this study were as follows; Microstructure of austemped ductile cast iron obtained by austempering were low bainite with some martensite at $250^{\circ}C$, mixture of low and upper bainite at $300^{\circ}C$ and upper bainite at $350^{\circ}C$. With increasing austempering temperature, yield strength, tensile strength and hardness decreased, while the elongation and impact absorption energy increased. With increasing austempering temperature, fracture toughness value increased and mainly controlled by bolume fraction of retained austenite. The volume fraction of retained austenite increased and the fracture surface obtained fibrous and dimple with increasing austempering temperature.

  • PDF

Effect of Austempering Time on the Microstructure and Mechanical Properties of Ultra-High Strength Nanostructured Bainitic Steels (오스템퍼링 시간에 따른 초고강도 나노 베이나이트강의 미세조직과 기계적 특성)

  • Lee, Ji-Min;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.87-92
    • /
    • 2020
  • This study deals with the effects of austempering time on the microstructure and mechanical properties of ultra-high strength nanostructured bainitic steels with high carbon and silicon contents. The steels are composed of bainite, martensite and retained austenite by austempering and quenching. As the duration of austempering increases, the thickness of bainitic ferrite increases, but the thickness of retained austenite decreases. Some retained austenites with lower stability are more easily transformed to martensite during tensile testing, which has a detrimental effect on the elongation due to the brittleness of transformed martensite. With increasing austempering time, the hardness decreased and then remained stable because the transformation to nanostructured bainite compensates for the decrease in the volume fraction of martensite. Charpy impact test results indicated that increasing austempering time improved the impact toughness because the formation of brittle martensite was prevented by the decreased fraction and increased stability of retained austenite.

Study on the Mechanical Properties of Mo Series High Speed Tool Steel Austempered (Mo계 고속도 공구강의 오스템퍼렁에 따른 기계적 성질에 관한 연구)

  • Choi, M.S.;Lee, H.W.;Rho, Y.S.;Kim, Y.H.;Kim, H.G.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 1991
  • This study has been performed to find out the effect of austenitizing temperature, austempering temperature and its holding time, and tempering cycle on the mechanical properties such as impact resistance, hardness etc. of AISI $M_2$ Mo series high speed tool steel austempered or tempered after austempering treatment. The results obtained from the experiment are as follows ; (1) Optical micrograph has revealed that the transformation rate of bainite is delayed as the austenitizing temperature increases and that bainite is most apparently transformed at an austempering temperature of $290^{\circ}C$. (2) The amount of retained austenite during austempering has been analysed to be increased by the X-ray diffraction technique as the transformation product of bainite is increased. It has also been shown that the longer the holding time of austempering, the more the transformation quantity of bainite is formed, exhibiting, however, that the rate of bainitic transformation is considerably retarded after a certain period of holding time elapses. (3) Hardness measurement has shown that hardness values obtained after austempering increase with decreasing the amount of retained austenite. (4) The austempering and then tempering cycle has been formed to give hardness values which are more greatly improved as austenitizing temperature is increased. (5) The mechanical property of the specimen primary-tempered for 1 hour at $550^{\circ}C$ after austempering for 2 hours at $290^{\circ}C$ from the austenitizing temperature range of $1180^{\circ}C$ to $1210^{\circ}C$ have been estimated to be good values.

  • PDF

Effect of Cu on the mechanical Properties and damping capacity of austempered ductile cast iron (오스템퍼링 처리한 구상흑연주철의 기계적 성질 및 감쇠능에 미치는 Cu의 영향)

  • Lee, K.H.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.72-77
    • /
    • 2008
  • This study was investigated to know the effect of Cu addition on austempered ductile cast iron at various temperatures and times. Test results showed that the volume fraction of retained austenite and the carbon contents of retained austenite showed the greatest value at $400^{\circ}C$. Also, in case of specimens having more Cu contents, the volume fraction of retained austenite and the carbon contents of retained austenite showed the lower value. After austempering treatment, tensile strength and Impact value increased, but elongation decreased. With increasing austempering treatment temperature, tensile strength, elongation, and impact value decreased. In case of specimen having more Cu contents, tensile strength showed the higher value, but elongation showed the lower value. Damping capacity was decreased by austempering treatment and was not affected on austempering temperature and time. In case of specimen having more Cu contents, damping capacity showed the higher value.

  • PDF

Effect of Austempering Treatment on Damping Capacity and Mechanical Properties in Gray Cast Iron (회주철의 진동감쇠능과 기계적 성질에 미치는 오스템퍼링처리의 영향)

  • Han, D.W.;Kim, J.C.;Son, Y.C.;Baik, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.108-116
    • /
    • 1999
  • Gray cast iron with a high damping capacity has been used for controlling the vibration and noise in various mechanical structures. Nevertheless, its usage has been often restricted due to its poor tensile strength. Therefore, it is necessary to improve tensile strength at the expense of a loss in damping capacity. This study is aimed at finding the best combination of tensile strength and damping capacity by varying austempering time and temperature range from $320^{\circ}C$ to $380^{\circ}C$ after austenization at $900^{\circ}C$ for 1hr. The effect of austempering condition on hardness and the volume fraction of retained austenite is investigated as well. The results obtained are summarized as follows : (1) With an increase in austempering temperature, both tensile strength and hardness decrease while damping capacity improves. (2) Austempering at $350^{\circ}C$, resulting in a mixture of upper and lower bainite with partially retained austenite, exhibits the optimum combination of tensile strength and damping capacity.

  • PDF

Development of Control Technology of Austempered Ductile Iron with High Strength and High Toughness for Gear Parts. (고강도 ADI의 기어부품 개발에 관한 연구)

  • Kim, Won-Yong;Kim, Kwang-Bae;Kang, In-Chan;An, Sang-Uk
    • Journal of Korea Foundry Society
    • /
    • v.13 no.2
    • /
    • pp.187-193
    • /
    • 1993
  • In this study, it was examined the relationship between the microstructure, fatigue properties, mechanical properties and retained austenite volume of Mo-Ni ADI corresponding to various austempering temperatures. When the austempering temperature is increased to $370^{\circ}C$, acicular bainite structure was found to be transformed to feathery bainite structure. But at the austempering temperature of $420^{\circ}C$, the dissolved bainite lath was showned. Up to the austempering temperature of $370^{\circ}C$, the volume of retained austenite was increased. However at the austempering temperature of $420^{\circ}C$ a large amount of retained austenite was decreased. In this study, the retained austenite volume was determined by XRD(X-ray diffraction). It was observed that the optimum fatigue properties can be obtained at the condition of austempering temperature $370^{\circ}C$. Under the such conditions, fatigue limit determined as the value of 290 MPa, tensile strength 877MPa elongation 6%, hardness 285(BHN), impact values(CVN) 9.2J and retained austenite volume 30.3%, respectively.

  • PDF

Effect of Austempering on Microstructure and Mechanical Properties of High-Carbon Nano-Bainite Steels (고탄소 나노 베이나이트강의 미세조직과 기계적 특성에 미치는 오스템퍼링의 영향)

  • Lee, J.M.;Ko, S.W.;Ham, J.H.;Song, Y.B.;Kim, H.K.;Hwang, B.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.219-225
    • /
    • 2019
  • This study deals with the effect of austempering temperature and time on the microstructures and mechanical properties of high-carbon nano-bainite steels. Although all the austempered specimens are mainly composed of bainite, martensite, and retained austenite, the specimens which are austempered at lower temperatures contain finer packets of bainite. As the duration for austempering increases, bainite packets are clearly seen due to larger amount of carbon atoms being redistributes into bainite and retained austenite during bainite transformation. As the austempering time increases, the hardness of the specimens gradually decreases as a result of lower martensite volume fraction, and later increases again due to the formation of nano-bainite structure. The Charpy impact test results indicate that the impact toughness of the austempered specimens can be improved if the formation of nano-bainite structure and the transformation induced plasticity effect of retained austenite are optimized at higher austempering temperature.

Effect of Austempering Temperature on the Fracture Characteristics in Austempered Ductile Cast Iron (오스템퍼드 구상흑연주철의 파괴특성에 미치는 오스템퍼링 온도의 영향에 관한 연구)

  • Park, Jun-Hoon;Gang, Chang-Yong;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.146-155
    • /
    • 1995
  • This study was performed to investigate the effect of austempering temperature on the mechanical properties and fracture characteristics of the ductile cast iron with Cu, Mo and Cu, Mo, Ni. The results obtained from this study are summarized as follows; Microstructures of Cu-Mo and Cu-Mo-Ni ductile cast iron by austempering were obtained low bainite with some martensite at $250^{\circ}C$, mixture structure of upper and low bainite obtained at $300^{\circ}C$ and upper bainite obtained at $350^{\circ}C$. Tensile, impact and fracture toughness properties were remarkably controlled by retained austenite. With increasing austempering temperature, tensile and yield strength, hardness decreased, while the elongation and impact absorption energy, fracture toughness increased. With adding Ni, tensile and yield strength increased and elongation, facture toughness and impact absorption energy decreased. Retained austenite increased with increasing austempering temperature and the fracture surface were shown mixture structure of fibrous and dimple.

  • PDF

The Austempering Transformation Behavior of Fe-0.7wt.%C-2.3wt.%Si-0.3wt.%Mn Steel (Fe-0.7wt.%C-2.3wt.%Si-0.3wt.%Mn 강의 오스템퍼링 변태 거동)

  • Shin, Sang-Yun;Lee, Do-Hoon;Kim, Seo-Eun;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.34 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • The austempering transformation behavior in Fe-0.7wt.%C-2.3wt.%Si-0.3wt.%Mn steel is investigated. Each specimen was austenitized for 60 min at $900^{\circ}C$, and austempered at $380^{\circ}C$ for different time periods varying from 2 min to 256 min. After the austempering heat treatment, the Stage I and II evolutions are performed using optical metallography, X-ray diffraction and image analyses. Variations in the X-ray diffraction patterns and lattice parameters of the ferrite and austenite demonstrate that the residual austenite decomposes into ferrite and carbide during the Stage II evolution; moreover the amount of ferrite increases during the Stage I evolution. While the amount of austenite increases during Stage I, it dicreases during Stage II. Overall, the variations in the volume fractions of the microstructure and carbide formation in stages I and II meet high temperature austempering reaction of the ausferrite microstructure.