• Title/Summary/Keyword: austenitic alloy

Search Result 96, Processing Time 0.024 seconds

Corrosion Behavior of a High-Manganese Austenitic Alloy in Pure Zinc Bath

  • Yi, Zhang;Liu, Junyou;Wu, Chunjing
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.98-103
    • /
    • 2010
  • In order to further reduce the cost without reducing the corrosion resistance, a high-manganese austenitic alloy for sink roll or stabilizer roll in continuous hot-dip coating lines was developed. A systematic study of corrosion behavior of the high-manganese austenitic alloy in pure zinc bath at $490^{\circ}C$ was carried out. The results shows that, the high-manganese austenitic alloy shows better corrosion resistance than 316L steel. The corrosion rate of the high-manganese austenitic alloy in pure zinc bath is calculated to be approximately $6.42{\times}10^{-4}g{\cdot}cm^{-2}{\cdot}h^{-1}$, while the 316L is $1.54{\times}10^{-3}g{\cdot}cm^{-2}{\cdot}h^{-1}$. The high-manganese austenitic alloy forms a three-phase intermetallic compound layer morphology containing ${\Gamma$}, ${\delta}$ and ${\zeta}$ phases, while the 316L is almost ${\zeta}$ phase. The ${\Gamma}$ and ${\delta}$ phases of the high-manganese austenitic alloy contain about 8.5 wt% Cr, the existence of Cr improve the stabilization of phases, which slow down the reaction of Fe and Zn, improve the corrosion resistance of the high-manganese austenitic alloy. So substitute the nickel with the manganese to manufacture the high-manganese austenitic alloy of low cost is feasible.

A Study on Alloy Design for Improving Pitting Resistance of Austenitic Stainless Steel Weld under Ocean Water Atmosphere (오스테나이트계 스테인리스강 용접부의 공식저항성을 위한 합금설계에 관한 연구)

  • 변경일;정호신;성상철
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.89-96
    • /
    • 1999
  • The base metal and weld metal of alloy designed austenitic stainless steels were electrochemically tested in artificial sea water. Pitting resistance of 14 different stainless steels was evaluated by measuring pitting potential. The effect of alloy element to pitting potential was evaluated by changing chromium, nickel, sulfur content. The site of pitting initiation was observed by optical microscope. As a result of electrochemical test, pitting resistance of weld metal was higher than base metal, and rapidly cooled weld metal has higher pitting potential than slowly cooled weld metal. In case of primary δ-ferrite solidification, pitting potential was increased, but residual δ-ferrite was detrimental to pitting resistance. Chromium was more effective to pitting resistance than nickel, and sulfur was very detrimental element to pitting resistance.

  • PDF

Elevated Temperature Properties of Austenitic Heat-resistant Ductile Irons (오스테나이트계 내열 구상흑연주철의 고온 특성)

  • Choe, Kyeong-Hwan;Seo, Joung-Hyck;Kim, Su-Hwang
    • Journal of Korea Foundry Society
    • /
    • v.37 no.2
    • /
    • pp.31-37
    • /
    • 2017
  • A new form of austenitic heat-resistant ductile iron was developed and its microstructures and elevated temperature properties were compared to those of Ductile Ni-Resist D5S. According to JMatPro calculations, it was predicted that Mo-rich carbides would be crystallized before the eutectic reaction starts in the developed alloy. At the austenite cell boundaries of the developed alloy, both Mo-rich carbides and Cr-rich carbides were found. In addition, Ni-silicides were found adjacent to Cr-rich carbides in D5S specimen and were identified as $Ni_2Si$. The developed alloy also had greater yield strength and lower tensile strength levels with less elongation due to the dissolution of Mo atoms into the austenite matrix and the precipitation of Mo-rich carbides. From the results of elevated temperature tensile tests and stress-rupture tests, it was found that the developed alloy had elevated temperature properties superior to those of D5S. This was due to the pinning effect of the dissolved Mo atoms in the austenite matrix.

Influence of ultrasonic impact treatment on microstructure and mechanical properties of nickel-based alloy overlayer on austenitic stainless steel pipe butt girth joint

  • Xilong Zhao;Kangming Ren;Xinhong Lu;Feng He;Yuekai Jiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4072-4083
    • /
    • 2022
  • Ultrasonic impact treatment (UIT) is carried out on the Ni-based alloy stainless steel pipe gas tungsten arc welding (GTAW) girth weld, the differences of microstructure, microhardness and shear strength distribution of the joint before and after ultrasonic shock are studied by microhardness test and shear punch test. The results show that after UIT, the plastic deformation layer is formed on the outside surface of the Ni-based alloy overlayer, single-phase austenite and γ type precipitates are formed in the overlayer, and a large number of columnar crystals are formed on the bottom side of the overlayer. The average microhardness of the overlayer increased from 221 H V to 254 H V by 14.9%, the shear strength increased from 696 MPa to 882 MPa with an increase of 26.7% and the transverse average residual stress decreased from 102.71 MPa (tensile stress) to -18.33 MPa (compressive stress), the longitudinal average residual stress decreased from 114.87 MPa (tensile stress) to -84.64 MPa (compressive stress). The fracture surface has been appeared obvious shear lip marks and a few dimples. The element migrates at the fusion boundary between the Ni-based alloy overlayer and the austenitic stainless steel joint, which is leaded to form a local martensite zone and appear hot cracks. The welded joint is cooled by FA solidification mode, which is forming a large number of late and skeleton ferrite phase with an average microhardness of 190 H V and no obvious change in shear strength. The base metal is all austenitic phase with an average microhardness of 206 H V and shear strength of 696 MPa.

A Study on the Diffusion Behaviors in Weld Interface of Cr-Mo Steel/Austenitic Stainless Steel (Cr-Mo강/오스테나이트계 스테인리스강 용접재의 용접계면에서의 확산거동에 관한 연구)

  • 김동배;이상율;이종훈;이상용;양성철
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.46-52
    • /
    • 1999
  • Some of the pressurized reactor pressure vessels used in many chemical plants are made of low alloy carbon steel plates internally clad with an austenitic stainless steel for improved anti-corrosion properties. In this study, metallurgic structure of the weld interface of A 387 Grade12Class1 low alloy carbon steel claded with A182-F321 austenitic stainless steel after thermal exposure simulation heat treatment was investigated to display a characteristic behavior of dissimilar metal weld interface with thermal exposure during service at high temperature and pressure. EPMA, STEM, vickers-hardness test were performed and the results were correlated with the microstructure. To estimate the depth of the carburized/decarburized bands quantitatively, a model for carbon diffusion was proposed. The validity of the proposed theoretical relationships was confirmed by the directly measured data from the welded parts failed during service.

  • PDF

Evaluation of Corrosion Resistance of Materials for Supercritical Carbon Dioxide Power Plant (초임계 이산화탄소 발전용 소재의 고온 내식성 평가)

  • Chae, Hobyung;Seo, Sukho;Jung, Yong Chan;Lee, Soo Yeol
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.109-113
    • /
    • 2015
  • 초임계 이산화탄소 발전 시스템 구축을 위해서는 고온, 고압의 열악한 환경에 노출되는 터빈, 열 교환기, 압축기와 같은 핵심 부품들의 내식성 평가는 반드시 수행되어야 한다. 이를 위해 후보소재 3종 Ferritic-Martensitic Steel (T92), Austenitic Steel (SS316L), Ni-based Alloy (IN738LC)를 선정하여 고온의 유사 초임계 $CO_2$ 발전 환경에서의 내식성 평가를 진행하였다. $600^{\circ}C$, $700^{\circ}C$의 2개의 온도 구간에서 $CO_2$ 분위기를 조성하여 800 시간 동안 노출시킨 뒤, Weight Change, Surface Morphology, Cross Section, Composition을 분석하였다. Cr-rich Protective Layer를 형성하는 Ni-based Alloy와 Fe/Cr-rich oxide를 형성하는 Austenitic Steel은 우수한 부식 저항성을 보인 반면에 Ferritic-Martensitic Steel은 높은 Weight Change와 Fe-rich Non-Protective Oxide가 관찰되어 상대적으로 낮은 부식 저항성을 보였다.

Distinct properties of tungsten austenitic stainless alloy as a potential nuclear engineering material

  • Salama, E.;Eissa, M.M.;Tageldin, A.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.784-791
    • /
    • 2019
  • In the present study, a series of tungsten austenitic stainless steel alloys have been developed by interchanging the molybdenum in standard SS316 by tungsten. This was done to minimize the long-life residual activation occurred in molybdenum and nickel after decommissioning of the power plant. The microstructure and mechanical properties of the prepared alloys are determined. For the sake of increasing multifunction property of such series of tungsten-based austenitic stainless steel alloys, gamma shielding properties were studied experimentally by means of NaI(Tl) detector and theoretically calculated by using the XCOM program. Moreover, fast neutrons macroscopic removal cross-section been calculated. The obtained combined mechanical, structural and shielding properties indicated that the modified austenitic stainless steel sample containing 1.79% tungsten and 0.64% molybdenum has preferable properties among all other investigated samples in comparison with the standard SS316. These properties nominate this new composition in several nuclear application domains such as, nuclear shielding domain.

Influence of Cu and Ni on Ductile-Brittle Transition Behavior of Metastable Austenitic Fe-18Cr-10Mn-N Alloys (준안정 오스테나이트계 Fe-18Cr-10Mn-N 합금의 연성-취성 천이 거동에 미치는 Cu와 Ni의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.385-391
    • /
    • 2013
  • The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating low-temperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of ${\delta}$-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and ${\delta}$-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.

Effect of Seawater Temperature on the Cyclic Potentiodynamic Polarization Characteristics and Microscopic Analysis on Damage Behavior of Super Austenitic Stainless Steel (슈퍼오스테나이트 스테인리스강의 순환동전위 분극특성에 미치는 해수온도의 영향과 손상 거동에 관한 미시적 분석)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.412-425
    • /
    • 2021
  • Because austenitic stainless steel causes localized corrosion such as pitting and crevice corrosion in environments containing chlorine, corrosion resistance is improved by surface treatment or changes of the alloy element content. Accordingly, research using cyclic potentiodynamic polarization experiment to evaluate the properties of the passivation film of super austenitic stainless steel that improved corrosion resistance is being actively conducted. In this investigation, the electrochemical properties of austenitic stainless steel and super austenitic stainless steel were compared and analyzed through cyclic potentiodynamic polarization experiment with varying temperatures. Repassivation properties were not observed in austenitic stainless steels at all temperature conditions, but super austenitic stainless steels exhibited repassivation behaviors at all temperatures. This is expressed as α values using a relational formula comparing the localized corrosion rate and general corrosion rate. As the α values of UNS S31603 decreased with temperature, the tendency of general corrosion was expected to be higher, and the α value of UNS N08367 increased with increasing temperatures, so it is considered that the tendency of localized corrosion was dominant.

The Effect of Post-Bond Heat Treatment on Tensile Property of Diffusion Bonded Austenitic Alloys (확산 접합된 오스테나이트계 재료의 인장특성에 미치는 후열처리의 영향)

  • Hong, Sunghoon;Kim, Sung Hwan;Jang, Changheui;Sah, Injin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1221-1227
    • /
    • 2015
  • Diffusion bonding is the key manufacturing process for the micro-channel type heat exchangers. In this study, austenitic alloys such as Alloy 800HT, Alloy 690, and Alloy 600, were diffusion bonded at various temperatures and the tensile properties were measured up to $650^{\circ}C$. Tensile ductility of diffusion bonded Alloy 800HT was significantly lower than that of base metal at all test temperatures. While, for Alloy 690 and Alloy 600, tensile ductility of diffusion bonded specimens was comparable to that of base metals up to $500^{\circ}C$, above which the ductility became lower. The poor ductility of diffusion bonded specimen could have caused by the incomplete grain boundary migration and precipitates along the bond-line. Application of post-bond heat treatment (PBHT) improved the ductility close to that of base metals up to $550^{\circ}C$. Changes in tensile properties were discussed in view of the microstructure in the diffusion-bonded area.