• Title/Summary/Keyword: autocatalytic

Search Result 61, Processing Time 0.025 seconds

CRITICALITY SAFETY OF GEOLOGIC DISPOSAL FOR HIGH-LEVEL RADIOACTIVE WASTES

  • Ahn, Joon-Hong
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.489-504
    • /
    • 2006
  • A review has been made for the previous studies on safety of a geologic repository for high-level radioactive wastes (HLW) related to autocatalytic criticality phenomena with positive reactivity feedback. Neutronic studies on geometric and materials configuration consisting of rock, water and thermally fissile materials and the radionuclide migration and accumulation studies were performed previously for the Yucca Mountain Repository and a hypothetical water-saturated repository for vitrified HLW. In either case, it was concluded that it would be highly unlikely for an autocatalytic criticality event to happen at a geologic repository. Remaining scenarios can be avoided by careful selection of a repository site, engineered-barrier design and conditioning of solidified HLW. Thus, criticality safety should be properly addressed in regulations and site selection criteria. The models developed for radiological safety assessment to obtain conservatively overestimated exposure dose rates to the public may not be used directly for the criticality safety assessment, where accumulated fissile materials mass needs to be conservatively overestimated. The models for criticality safety also require more careful treatment of geometry and heterogeneity in transport paths because a minimum critical mass is sensitive to geometry of fissile materials accumulation.

Autocatalytic Cure Kinetics of DGEBA/MDA/PGE-AcAm System (DGEBA/MDA/PGE-AcAm계의 자촉매 반응 속도론)

  • Lee, Jae-Yeong;Sim, Mi-Ja;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.797-801
    • /
    • 1998
  • The cure kinetics for diglycidyl ether of bisphenol A(DGEBA)/4, 4'-methylene dianiline(MDA) system with or without lOphr of phenyl glycidyl ether(PGE)-acetamide(AcAm) was studied by autocatalytic cure expression. On the dynamic DSC curves, the exothermic peak temperature and the onset temperature of reaction decreased with the addition of PGE-AcAm. Regardless of the addition of PGE-AcAm, the shape of the conversion curve showed sigmoid, and this meant that DGEBA/MDA and DGEBA/MDA/PGE-AcAm systems followed autocatalytic cure reaction. When PGE-AcAm was added to DGEBA/MDA system, the cure rate increased about 1.2~1.4 times due to the catalytic role of hydroxyl groups in PGE-AcAm.

  • PDF

Application of CFD model for passive autocatalytic recombiners to formulate an empirical correlation for integral containment analysis

  • Vikram Shukla;Bhuvaneshwar Gera;Sunil Ganju;Salil Varma;N.K. Maheshwari;P.K. Guchhait;S. Sengupta
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4159-4169
    • /
    • 2022
  • Hydrogen mitigation using Passive Autocatalytic Recombiners (PARs) has been widely accepted methodology inside reactor containment of accident struck Nuclear Power Plants. They reduce hydrogen concentration inside reactor containment by recombining it with oxygen from containment air on catalyst surfaces at ambient temperatures. Exothermic heat of reaction drives the product steam upwards, establishing natural convection around PAR, thus invoking homogenisation inside containment. CFD models resolving individual catalyst plate channels of PAR provide good insight about temperature and hydrogen recombination. But very thin catalyst plates compared to large dimensions of the enclosures involved result in intensive calculations. Hence, empirical correlations specific to PARs being modelled are often used in integral containment studies. In this work, an experimentally validated CFD model of PAR has been employed for developing an empirical correlation for Indian PAR. For this purpose, detailed parametric study involving different gas mixture variables at PAR inlet has been performed. For each case, respective values of gas mixture variables at recombiner outlet have been tabulated. The obtained data matrix has then been processed using regression analysis to obtain a set of correlations between inlet and outlet variables. The empirical correlation thus developed, can be easily plugged into commercially available CFD software.

Cure Kinetics of a Bisphenol-A Type Vinyl-Ester Resin Using Non-Isothermal DSC

  • Ahn, WonSool
    • Elastomers and Composites
    • /
    • v.53 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In the current research, the curing kinetics of a mixture system consisting of a Bisphenol-A type vinyl ester resin and styrene monomer was studied. Methylethylketone peroxide and cobalt octoate were used as the polymerization initiator and accelerator respectively. Thermograms with several different heating rates were obtained using non-isothermal differential scanning calorimetry. Activation energy values analyzed by the Flynn-Wall-Ozawa isoconversional method showed a three-step change with conversion ${\alpha}$: a slight decrease initially for ${\alpha}$ < 0.1, a constant value of 47.9 kJ/mol in the range 0.1 < ${\alpha}$ < 0.7, and a slow increase for 0.7 < ${\alpha}$. When assuming a constant activation energy of 47.9 kJ/mol, an autocatalytic model of the Sestak-Berggren equation was considered as the proper mathematical model of the conversion function, indicating an overall order of 1.2.

CFD analysis of the effect of different PAR locations against hydrogen recombination rate

  • Lee, Khor Chong;Ryu, Myungrok;Park, Kweonha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • Many studies have been conducted on the performance of a passive autocatalytic recombiner (PAR), but not many have focused on the locations where the PAR is installed. During a severe accident in a nuclear reactor containment, a large amount of hydrogen gas can be produced and released into the containment, leading to hydrogen deflagration or a detonation. A PAR is a hydrogen mitigation method that is widely implemented in current and advanced light water reactors. Therefore, for this study, a PAR was installed at different locations in order to investigate the difference in hydrogen reduction rate. The results indicate that the hydrogen reduction rate of a PAR is proportional to the distance between the hydrogen induction location and the bottom wall.

Direct Observation on the Low Temperature Degradation Due to Surface Treatment in Y-TZP (Y-TZP에서 표면 처리에 따른 저온열화 거동의 직접적 관찰)

  • Chung, Tai-Joo;Kim, Hye-Sung
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.197-202
    • /
    • 2010
  • Low temperature degradation behavior in yttria stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics was microscopically observed from the phase contrast between monoclinic surface and tetragonal matrix. The degradation behavior was dependent on the surface treatment of sintered Y-TZP, even if the sintering history is same. In the mirror polished specimen, the monoclinic layer appeared in a uniform thickness from the surface. On the contrary, for the specimen with coarse scratch, the thickness of degraded surface was more than double especially from the coarse scratch. Since the scratch results in local deformation, the residual stress should be induced around the scratch. With the transformation from tetragonal to monoclinic, the volume expansion exerts a stress on a neighboring grains and promotes a successive phase transformation. Such a autocatalytic effect can be triggered from the part of coarse scratch.

A Kinetic Study of Biphenyl Type Epoxy-Xylok Resin System with Different Kinds of Catalysts

  • 한승;김환근;윤호규;문탁진
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1199-1203
    • /
    • 1997
  • The investigation of cure kinetics of biphenyl epoxy (4,4-diglycidyloxy-3,3,5,5-tetramethyl biphenyl)-xylok resin system with four different catalysts was performed by differential scanning calorimeter using an isothermal approach. All kinetic parameters of the curing reaction including the reaction order, activation energy and rate constant were calculated and reported. The results indicate that the curing reaction of the formulations using triphenylphosphine (TPP) and 1-benzyl-2-methylimidazole (1B2MI) as a catalyst proceeds through a first order kinetic mechanism, whereas that of the formulations using diazabicyloundecene (DBU) and tetraphenyl phosphonium tetraphenyl borate (TPP-TPB) proceeds by an autocatalytic kinetic mechanism. To describe the cure reaction in the latter stage, we have used the semiempirical relationship proposed by Chern and Poehlein. By combining an nth order kinetic model or an autocatalytic model with a diffusion factor, it is possible to predict the cure kinetics of each catalytic system over the whole range of conversion.

Two Ethylene Signaling Pathways in Senescing Carnation Petals: Exogenous Ethylene-induced Expression of Genes for 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase and ACC Oxidase is Different from That of the Gene for Cysteine Proteinase

  • Satoh, Shigeru;Kosugi, Yusuke;Iwazaki, Yujiro;Shibuya, Kenichi;Waki, Keisuke
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.83-87
    • /
    • 2000
  • Carnation petals exhibit autocatalytic ethylene production and wilting during senescence. The autocatalytic ethylene production is induced by the expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes, whereas the wilting of petals is related to expression of the cysteine proteinase (CP) gene. Until recently, it has been believed that these two phenomena, autocatalytic ethylene production and wilting, are regulated in concert in senescing carnation petals, since the two phenomena occurred closely in parallel. Our studies with petals of a transgenic carnation harboring a sense ACC oxidase transgene and petals of carnation flowers treated with 1,1-dimethyl-4-(phenylsulfonyl) semicarbazide showed that the expression of ACC synthase and ACC oxidase genes and that of CP are regulated differently in carnation psanetals. Interestingly, in the petals of transgenic carnation, the transcript for CP was accumulated but the transcripts for ACC synthase and ACC oxidase were not accumulated in response to exogenous ethylene. Based on these results, we hypothesized that two ethylene signaling pathways, one leading to the expression of ACC synthase and ACC oxidase genes and the other leading to the expression of CP gene, are functioning in senescing carnation petals.

  • PDF

Effect of Grain Size and Heat-treating Atmosphere on the Phase Stability of Y-TZP (입자크기와 열처리 분위기 변화에 따른 Y-TZP에서의 상안정성 변화)

  • Chung, Tai-Joo;Ahn, Seung-Su;Song, Eun-Wha;Oh, Kyung-Sik;Lee, Jong-Sook;Kim, Young-Sik
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.360-365
    • /
    • 2006
  • The phase stability of tetragonal phase in Y-TZP was investigated in terms of the distribution of grain sizes and heat-treating atmosphere. Y-TZP with various grain sizes were prepared using duration time at $1600^{\circ}C$ as experimental parameter. Accumulated grain size distributions were built from the SEM micrographs and the amount of tetragonal phase were measured using XRD. Both results were compared to determine the critical grain size before and after heat-treatment in vacuum. The critical grain size drastically decreased compared with the small increase of average grain size due to the autocatalytic effect which critically affects the tetragonal to monoclinic phase transformation. After heat-treatment in reductive atmosphere critical grain size relatively increased due to the stabilization of tetragonal phase. The formation of oxygen vacancies during heat-treatment was ascribed to the increase of stability.