• Title/Summary/Keyword: avian pathogenic Escherichia coli

Search Result 13, Processing Time 0.03 seconds

Evaluation of systemic and mucosal immune responses in mice administered with novel recombinant Salmonella vaccines for avian pathogenic Esherichia coli

  • Oh, In-Gyeong;Lee, John Hwa
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.4
    • /
    • pp.199-205
    • /
    • 2013
  • Avian pathogenic Escherichia coli (APEC) is a causative agent for a number of extra intestinal diseases and account for significant losses to the poultry industry. Since protective immunity against APEC is largely directed to virulence antigens, we have individually expressed four different viulence antigens, papA, papG, IutA, and CS31A, using an attenuated Salmonella Typhimurium and a plasmid pBB244. Following oral immunization of mice with combination of two or four of these strains, serum IgG and mucosal IgA responses were elicited against each antigen represented in the mixture. The antigen-specific mucosal IgA responses were significantly higher in the group of mice immunized with the heat-labile Escherichia coli enterotoxin B subunit (LTB) strain than those in the group of mice immunized without the LTB strain. While, there was no significant difference between these two groups in antigen-specific serum IgG responses. The results showed that LTB could act as mucosal immune adjuvant. To assess the nature of immunity, the distribution of antigen-specific IgG isotypes was analyzed. All groups promoted Th1-type immunity as determined by the IgG2a/IgG1 ratio. Thus, our findings provided evidence that immunization with a combination of several vaccine strains is one of the strategies of developing effective vaccines against APEC.

Antibiotic resistance pattern of avian pathogenic Escherichia coli isolated from chickens (닭에서 분리된 조류 병원성 대장균의 항생제 내성 양상)

  • Kim, Myeong Suk;Kwon, Hyuk Moo;Sung, Haan Woo
    • Korean Journal of Veterinary Research
    • /
    • v.49 no.3
    • /
    • pp.195-200
    • /
    • 2009
  • Avian pathogenic Escherichia coli (APEC) is an important bacterial pathogen of chickens and causes colibacillosis such as airsacculitis, perihepatitis, omphalitis, peritonitis, salpingitis, and pericarditis. As the transfer of antibiotic resistance from animal to humans can be possible, surveillance on antibiotic resistance of APEC is very important. A total 34 APEC isolates from diseased chickens during the period from 2007 to 2009 were obtained. The susceptibility of the isolates to 13 antibiotics was determined by disc diffusion assay. Resistance to erythromycin was found in 97.1% of APEC isolated, followed by resistance to tetracycline (85.3%), doxycycline (82.3%), ampicillin (73.5%), sulfisoxazole (67.6%), enrofloxacin (67.6%), ciprofloxacin (64.7%), norfloxacin (61.7%) trimethoprim/sulfamethoxazole (52.9%), gentamycin (26.5%), amoxicillin (8.8%), colistin (5.9%), and amikacin (2.9%). The blaTEM genes were detected in 25 (100%) of the 25 ampicillin-resistant APEC isolates. Among the 29 tetracycline-resistant APEC isolates, tetA and tetB genes were detected in 18 (62.1%) and 9 (31%) isolates, respectively. Twenty six (76.5%) isolates were multiresistant to at least 6 antibiotics and seven (20.1%) isolates were multiresistant to at least 10 antibiotics. This results indicated that multiple antibiotic-resistant APEC is widespread in chicken flocks in Korea.

Hens immunized with live attenuated Salmonella strains expressing virulence-associated genes in avian pathogenic Escherichia coli passively transfer maternal antibodies to chicks

  • Won, Gayeon;Lee, John Hwa
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.3
    • /
    • pp.167-176
    • /
    • 2016
  • We investigated whether maternal antibodies (mAbs) elicited by dams immunized with recombinant vaccine candidates against avian pathogenic Escherichia coli (APEC) can passively confer protective immunity to chicks. In the present study, pBP244 plasmids carrying selected antigens of APEC were transformed into Salmonella Typhimurium JOL912, which was used as a vaccine candidate against APEC. The hens were immunized with the vaccine candidates using prime or booster doses. The levels of IgG and sIgA specific to the selected antigens increased significantly following prime immunization. To evaluate the persistence of passively transferred mAbs, the levels of IgY and IgA were determined in egg yolks and whites, respectively. The eggs from the immunized group showed consistently increased levels of IgY and IgA until week 16 post-laying (PL) and week 8 PL, respectively, relative to the control group. The presence of mAbs was observed in chicks that hatched from the hens, and titers of plasma IgY were consistently raised in those from the immunized hens by day 14 post-hatching. Further, chicks from the immunized hens were protected from challenge with a virulent APEC strain, whereas those from non-immunized hens showed acute mortality.

rpoB gene sequencing for phylogenetic analysis of avian pathogenic Escherichia coli

  • Kwon, Hyuk-Joon;Seong, Won-Jin;Kim, Tae-Eun;Won, Yong-Jin;Kim, Jae-Hong
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.1
    • /
    • pp.31-39
    • /
    • 2015
  • The present study was conducted to determine the full rpoB and eight house-keeping gene sequences of 78 and 35, respectively, avian pathogenic E. coli (APEC) strains. Phylogenetic comparison with 66 E. coli and Shigella strains from GenBank and EMBL was also conducted. Based on the full rpoB sequence, 50 different rpoB sequence types (RSTs) were identified. RST 1 was assigned to a major RST that included 34.7% (50/144) of the analyzed strains. RST 2 to RST 50 were then assigned to other strains with higher nucleotide sequence similarity to RST 1 in order. RST 1, 11, and 23 were mixed with APEC along with human commensal and pathogenic strains while RST 2, 6, 9, 13-15, 22, 24, 25, 33, 34, 36, and 41 were unique to APEC strains. Only five APEC strains grouped into RST 32 and 47, which contained human pathogenic E. coli (HPEC). Thus, most of the APEC strains had genetic backgrounds different from HPEC strains. However, the minor APEC strains similar to HPEC should be considered potential zoonotic risks. The resolution power of multi-locus sequence typing (MLST) was better than RST testing. Nevertheless, phylogenetic analysis of rpoB was simpler and more economic than MLST.

Molecular epidemiologic analysis of pathogenic Escherichia coli isolated from poultry in Korea (국내 가금 유래 병원성 대장균의 분자역학적 분석)

  • Sung, Myung-Suk;Kim, Jin-Hyun;Kim, Ki-Seuk
    • Korean Journal of Veterinary Research
    • /
    • v.50 no.3
    • /
    • pp.239-246
    • /
    • 2010
  • Among 203 avian pathogenic Escherichia coli (APEC) isolated from poultry with colibacillosis in korea, 14 isolates were selected from total 68 isolates transferred R plasmid and classified into 5 groups on the basis of antimicrobial minimal inhibitory concentration (MIC) pattern, farm source and O serotype. An association between clonal origin and R plasmid of them was investigated by R plasmid profile, restriction endonuclease analysis and pulsed-field gel electrophoresis (PFGE). The strains that showed the same or very similar antimicrobial MIC pattern, but different farm source and O serotype, revealed different PFGE pattern, which seemed to be different clonal origin. And the strains that showed the same MIC pattern and O serotype, revealed different PFGE pattern, seemed to be originated from different clone. Also the strains showing the same MIC pattern and farm source, but different O serotype, revealed to be different clonal origin. The strains that showed the same or similar MIC pattern, farm source, and O serotype, revealed identical or similar PFGE pattern, which seemed to belong to be one clone. Meanwhile, horizontal transfer of R plasmid seems to be common in APEC with regardless of O serotype and clone of the strains. These results indicate that rapid and accurate epidemiological survey of APEC can be possible by the combination of O serotyping, plasmid profiling and PFGE analysis following the classification of them into groups of antimicrobial drug resistance pattern.

Genotyping of avian pathogenic Escherichia coli by DNA fragment analysis for the differences in simple sequence repeats

  • Han, Mi Na;Byeon, Hyeon Seop;Han, Seong Tae;Jang, Rae Hoon;Kim, Chang Seop;Choi, Seok Hwa
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.4
    • /
    • pp.257-262
    • /
    • 2018
  • Avian pathogenic E. coli (APEC) causes severe economic losses in the poultry farms, due to systemic infections leading to lethal colisepticemia. It causes a variety of diseases from air sac infection to systemic spread leading to septicemia. Secondary infection contains opportunistic infections due to immunosuppression disease. Collibacillosis causes the great problems in the poultry industry in Korea. Thus, it is necessary to identify and classify the characteristics of E. coli isolate of chicken origin to confirm the diversity of symptoms and whether they are transmitted among the farms. Fragment analysis is identify the difference in the number of Variable-Number Tandem-Repeats (VNTRs) for genotyping. VNTRs have repeating structure (Microsatellite, Short tandem repeats; STR, Simple sequence repeats; SSR) in the chromosome. This region can be used as a genetic marker because of its high mutation rate. And various lengths of the amplified DNA fragment cause the difference in the number of repetition of the DNA specific site. The number of repetition sequences indicates the separated size of fragments, so the each fragments can be distinguished by specific samples. The results of the sample show that there is no difference in six microsatellite loci (yjiD, aidB, molR_1, ftsZ, b1668, yibA). There are differences among the farms in relation of the number of repetitions of other six microsatellite loci (ycgW, yaiN, yiaB, mhpR, b0829, caiF). Four (ycgW, yiaB, b0829, caiF) of these six microsatellite loci show statistically significant differences (P<0.05). It means that the analysis using four microsatellite loci including ycgW, yiaB, b0829, and caiF can confirm among the farms. Five E. coli samples in one farm have same SSR repetition at all markers. But, there are significant differences from other farms at Four (ycgW, yiaB, b0829, caiF) microsatellite loci. These results emphasize again that the four microsatellite loci makes a difference in the amplified DNA fragments, enabling it to be used for E. coli genotyping.

Evaluation of systemic and mucosal immune responses in mice administered with recombinant Salmonella Typhimurium expressing IutA protein

  • Oh, In-Gyeong;Choi, Minsu;Lee, John Hwa
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.3
    • /
    • pp.163-167
    • /
    • 2013
  • Avian pathogenic Escherichia coli (APEC) are known to cause extraintestinal disease in poultry, leading to substantial losses in the industry. IutA, iron-regulated aerobactin receptor is firmly associated with APEC. To assess the potential of IutA to induce protective immune responses, attenuated Salmonella Typhimurium strain expressing IutA was constructed and administered orally to BALB/c mice. The IutA-specific immune responses were measured with sera, vaginal and fecal samples by an enzyme-linked immunosorbent assay. We found that the Salmonella-IutA vaccine induced significantly higher immune responses as compared to the control inoculated with the attenuated S. Typhimurium containing the plasmid only. The IutA-specific immune responses were increased by second immunization at third week after initial immunization, whereas triple immunization induced lower immune responses than those induced by the double immunization. The Salmonella-IutA vaccine induced a nature of immunity biased to the Th1-type, as judged by the ratio of IutA-specific IgG isotypes (IgG2a/IgG1). Overall, these results suggest that the Salmonella-IutA vaccine appear to be suitable candidate for a vaccine against APEC.

Molecular characteristics of ESBL-producing Escherichia coli isolated from chickens with colibacillosis

  • Yoon, Sunghyun;Lee, Young Ju
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.37.1-37.8
    • /
    • 2022
  • Background: Avian pathogenic Escherichia coli (APEC) causes colibacillosis, resulting in significant economic losses in the poultry industry. Objectives: In this study, the molecular characteristics of two extended-spectrum beta-lactamase (ESBL)-producing APEC isolates were compared with previously reported ESBL-producing E. coli isolates. Methods: The molecular characteristics of E. coli isolates and the genetic environments of the ESBL genes were investigated using whole genome sequencing. Results: The two ESBL-producing APEC were classified into the phylogenetic groups C and B1 and ST410 and ST162, respectively. Moreover, the ESBL genes of the two isolates were harbored in different Inc plasmids. The EC1809182 strain, harboring the blaCTX-M-55 gene on the plasmid, exhibited extensive homology to IncFIB (98.4%) and IncFIC(FII) (95.8%). The EC1809191 strain, harboring the blaCTX-M-1 gene, was homologous to IncI1-I (Gamma) (99.3%). All chromosomes carried the multidrug transporter, mdf(A) gene. Mobile genetic elements, adjacent to CTX-M genes, facilitated the dissemination of genes in the two isolates, analogous to other ESBL-producing E. coli isolates. Conclusions: This study clarifies the transmission dynamics of CTX-M genes and supports strengthened surveillance to prevent the transmission of the antimicrobial-resistant genes to humans via the food chain.

Antiviral Effects of Titanium Dioxide Photocatalyst Treated Films against Highly Pathogenic Avian Influenza (고병원성 조류인플루엔자(H5N1)에 대한 이산화티타늄 광촉매 처리 필름의 항바이러스성 연구)

  • Lee, Sang-Do;Park, Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.201-206
    • /
    • 2021
  • Damage to the highly pathogenic avian influenza virus(H5N1) continues to increase, but there is a lack of antiviral research. In this study, we analyze antiviral properties on H5N1 by coating Cu/TiO2 photocatalyst on polyethylene films. The specimen was manufactured a photocatalyst master batch and coated both sides of the 3-layer polyethylene fabric at 280℃ from the extrusion coating machine. The results showed a 99.9% decrease in the Staphylococcus aureus and Escherichia coli. In particular, H5N1 type highly pathogenic avian influenza viruses, which is capable of human infection, has been found to decrease 99.9% within five minutes of contact with Cu/TiO2 films. Antibacterial effects of films coated with photocatalyst are known, but this study also confirmed the antiviral effects.

Disinfection of various materials with 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride in hatchery facilities

  • Kim, Yu-Jin;Kim, Jun-Beom;Song, Chang-Seon;Nahm, Sang-Soep
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.631-637
    • /
    • 2022
  • Objective: Surface disinfection is important in the proper running of livestock farms. However, disinfection of farm equipment and facilities is difficult because they are made of different materials, besides having large surface areas and complex structures. 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (Si-QAC) is a quaternary ammonium salt-based disinfectant that attaches to various surfaces by forming covalent bonds and maintains its disinfecting capacity for a considerable time. Our aim was to evaluate the potential use of Si-QAC for disinfection of farm equipment and facilities. Methods: The short- and long-term antimicrobial and antiviral effects of Si-QAC were evaluated in both laboratory and farm settings using modified quantitative assessment method based on the standard operating procedures of the United States Environmental Protection Agency. Results: Si-QAC was highly effective in controlling the growth of the Newcastle disease virus and avian pathogenic Escherichia coli. Electron microscopy revealed that the mechanism underlying the disinfection activity of Si-QAC was associated with its ability to damage the outer membrane of the pathogen cells. In the field test, Si-QAC effectively reduced viral contamination of surfaces of equipment and space. Conclusion: Our results suggest that Si-QAC has great potential as an effective chemical for disinfecting farm equipment and facilities. This disinfectant could retain its disinfection ability longer than other commercial disinfectants and contribute to better farm biosecurity.