• Title/Summary/Keyword: axial compressive capacity

Search Result 182, Processing Time 0.026 seconds

Postfire reliability analysis of axial load bearing capacity of CFRP retrofitted concrete columns

  • Cai, Bin;Hao, Liyan;Fu, Feng
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.289-299
    • /
    • 2020
  • A reliability analysis of the axial compressive load bearing capacity of postfire reinforced concrete (RC) columns strengthened with carbon fiber reinforced polymer (CFRP) sheets was presented. A 3D finite element (FE) model was built for heat transfer analysis using software ABAQUS. Based on the temperature distribution obtained from the FE analysis, the residual axial compressive load bearing capacity of RC columns was worked out using the section method. Formulas for calculating the residual axial compressive load bearing capacity of the columns after fire exposure and the axial compressive load bearing capacity of postfire columns retrofitted with CFRP sheets were developed. Then the Monte Carlo method was used to analyze the reliability of the axial compressive load bearing capacity of the RC columns retrofitted with CFRP sheets using a code developed in MATLAB. The effects of fire exposure time, load ratio, number of CFRP layers, concrete cover thickness, and longitudinal reinforcement ratio on the reliability of the axial compressive load bearing capacity of the columns after fire were investigated. The results show that within 60 minutes of fire exposure time, the reliability index of the RC columns after retrofitting with two layers of CFRPs can meet the requirements of Chinese code GB 50068 (GB 2001) for safety level II. This method is effective and accurate for the reliability analysis of the axial load bearing capacity of postfire reinforced concrete columns retrofitted with CFRP.

Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network

  • Nguyen, Mai-Suong T.;Thai, Duc-Kien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.415-437
    • /
    • 2020
  • Circular concrete filled steel tube (CFST) columns have an advantage over all other sections when they are used in compression members. This paper proposes a new approach for deriving a new empirical equation to predict the axial compressive capacity of circular CFST columns using the Artificial Neural Network (ANN). The developed ANN model uses 5 input parameters that include the diameter of circular steel tube, the length of the column, the thickness of steel tube, the steel yield strength and the compressive strength of concrete. The only output parameter is the axial compressive capacity. Training and testing the developed ANN model was carried out using 219 available sets of data collected from the experimental results in the literature. An empirical equation is then proposed as an important result of this study, which is practically used to predict the axial compressive capacity of a circular CFST column. To evaluate the performance of the developed ANN model and the proposed equation, the predicted results are compared with those of the empirical equations stated in the current design codes and other models. It is shown that the proposed equation can predict the axial compressive capacity of circular CFST columns more accurately than other methods. This is confirmed by the high accuracy of a large number of existing test results. Finally, the parametric study result is analyzed for the proposed ANN equation to consider the effect of the input parameters on axial compressive strength.

Study on axial compressive behavior of quadruple C-channel built-up cold-formed steel columns

  • Nie, Shaofeng;Zhou, Tianhua;Liao, Fangfang;Yang, Donghua
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.499-511
    • /
    • 2019
  • In this study, the axial compressive behavior of novel quadruple C-channel built-up cold-formed steel columns with different slenderness ratio was investigated, using the experimental and numerical analysis. The axial compressive capacity and failure modes of the columns were obtained and analyzed. The finite element models considering the geometry, material and contact nonlinearity were developed to simulate and analyze the structural behavior of the columns further. There was a great correlation between the numerical analyses and test results, which indicated that the finite element model was reasonable and accurate. Then influence of, slenderness ratio, flange width-to-thickness ratio and screw spacing on the mechanical behavior of the columns were studied, respectively. The tests and numerical results show that due to small slenderness ratio, the failure modes of the specimens are generally local buckling and distortional buckling. The axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns decrease with the increase of maximum slenderness ratio. When the screw spacing is ranging from 150mm to 450mm, the axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns change little. The axial compressive capacity of quadruple C-channel built-up cold-formed steel columns increases with the decrease of flange width-thickness ratio. A modified effective length factor is proposed to quantify the axial compressive capacity of the quadruple C-channel built-up cold-formed steel columns with U-shaped track in the ends.

Compressive performance of RAC filled GFRP tube-profile steel composite columns under axial loads

  • Ma, Hui;Bai, Hengyu;Zhao, Yanli;Liu, Yunhe;Zhang, Peng
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.335-349
    • /
    • 2019
  • To investigate the axial compressive performance of the recycled aggregate concrete (RAC) filled glass fiber reinforced polymer (GFRP) tube and profile steel composite columns, static loading tests were carried out on 18 specimens under axial loads in this study, including 7 RAC filled GFRP tube columns and 11 RAC filled GFRP tube-profile steel composite columns. The design parameters include recycled coarse aggregate (RCA) replacement percentage, profile steel ratio, slenderness ratio and RAC strength. The failure process, failure modes, axial stress-strain curves, strain development and axial bearing capacity of all specimens were mainly analyzed in detail. The experimental results show that the GFRP tube had strong restraint ability to RAC material and the profile steel could improve the axial compressive performance of the columns. The failure modes of the columns can be summarized as follow: the profile steel in the composite columns yielded first, then the internal RAC material was crushed, and finally the fiberglass of the external GFRP tube was seriously torn, resulting in the final failure of columns. The axial bearing capacity of the columns decreased with the increase of RCA replacement percentage and the maximum decreasing amplitude was 11.10%. In addition, the slenderness ratio had an adverse effect on the axial bearing capacity of the columns. However, the strength of the RAC material could effectively improve the axial bearing capacity of the columns, but their deformability decreased. In addition, the increasing profile steel ratio contributed to the axial compressive capacity of the composite columns. Based on the above analysis, a formula for calculating the bearing capacity of composite columns under axial compression load is proposed, and the adverse effects of slenderness ratio and RCA replacement percentage are considered.

Experimental and theoretical research on the compression performance of CFRP sheet confined GFRP short pole

  • Chen, Li;Zhao, Qilin;Jiang, Kebin
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.215-231
    • /
    • 2011
  • The axial compressive strength of unidirectional FRP is generally quite lower than its axial tensile strength. This fact decreases the advantages of FRP as main load bearing member in engineering structure. In order to restrain the lateral expansion and splitting of GFRP, and accordingly heighten its axial compressive bearing capacity, a project that to confine GFRP pole with surrounding CFRP sheet is suggested in the present study. The Experiment on the CFRP sheet confined GFRP poles showed that a combined structure of high bearing capacity was attained. Basing on the experiment research a theoretical iterative calculation approach is suggested to predict the ultimate axial compressive stress of the combined structure, and the predicted results agree well with the experimental results. Then the influences of geometrical parameters on the ultimate axial compressive stress of the combined structure are also analyzed basing on this approach.

Experimental and analytical investigations of CFFT columns with and without FRP bars under concentric compression

  • Khan, Qasim S.;Sheikh, M. Neaz;Hadi, Muhammad N.S.
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.591-601
    • /
    • 2019
  • This research study investigates experimentally and analytically the axial compressive behaviour of Concrete Filled Fiber Reinforced Polymer Tube (CFFT) columns with and without Fiber Reinforced Polymer (FRP) bars. The experimental program comprises five circular columns of 204-206 mm outer diameter and 800-812 mm height. All columns were tested under concentric axial compressive loads. It was found that CFFT columns with and without FRP bars achieved higher peak axial compressive loads and corresponding axial deformations than conventional steel reinforced concrete (RC) column. The contribution of FRP bars was about 12.1% of the axial compressive loads carried by CFFT columns reinforced with FRP bars. Axial load-axial deformation ($P-{\delta}$) curves of CFFT columns were analytically constructed, which mapped well with the experimental $P-{\delta}$ curves. Also, an equation was proposed to predict the axial compressive load capacity of CFFT columns with and without FRP bars, which adequately considers the contributions of the circumferential confinement provided by FRP tubes and lower ultimate strength of FRP bars in compression than in tension.

Axial compressive behavior of high strength concrete-filled circular thin-walled steel tube columns with reinforcements

  • Meng Chen;Yuxin Cao;Ye Yao
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.95-107
    • /
    • 2023
  • In this study, circular thin-walled reinforced high strength concrete-filled steel tube (RHSCFST) stub columns with various tube thicknesses (i.e., 1.8, 2.5 and 3.0mm) and reinforcement ratios (i.e., 0, 1.6%, 2.4% and 3.2%) were fabricated to explore the influence of these factors on the axial compressive behavior of RHSCFST. The obtained test results show that the failure mode of RHSCFST transforms from outward buckling and tearing failure to drum failure with the increasing tube thickness. With the tube thickness and reinforcement ratio increased, the ultimate load-carrying capacity, compressive stiffness and ductility of columns increased, while the lateral strain in the stirrup decreased. Comparisons were also made between test results and the existing codes such as AIJ (2008), BS5400 (2005), ACI (2019) and EC4 (2010). It has been found that the existing codes provide conservative predictions for the ultimate load-carrying capacity of RHSCFST. Therefore, an accurate model for the prediction of the ultimate load-carrying capacity of circular thin-walled RHSCFST considering the steel reinforcement is developed, based on the obtained experimental results. It has been found that the model proposed in this study provides more accurate predictions of the ultimate load-carrying capacity than that from existing design codes.

Nonlinear analysis of concrete-filled steel composite columns subjected to axial loading

  • Bahrami, Alireza;Badaruzzamana, Wan Hamidon Wan;Osmanb, Siti Aminah
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.383-398
    • /
    • 2011
  • This paper investigates the nonlinear analysis of concrete-filled steel composite columns subjected to axial loading to predict the ultimate load capacity and behaviour of the columns. Finite element software LUSAS is used to conduct the nonlinear analyses. The accuracy of the finite element modelling is verified by comparing the result with the corresponding experimental result reported by other researchers. Nonlinear analyses are done to study and develop different shapes and number of cold-formed steel sheeting stiffeners with various thicknesses of cold-formed steel sheets. Effects of the parameters on the ultimate axial load capacity and ductility of the concrete-filled steel composite columns are examined. Effects of variables such as concrete compressive strength $f_c$ and cold-formed steel sheet yield stress $f_{yp}$ on the ultimate axial load capacity of the columns are also investigated. The results are shown in the form of axial load-normalized axial shortening plots. It is concluded from the study that the ultimate axial load capacity and behaviour of the concrete-filled steel composite columns can be accurately predicted by the proposed finite element modelling. Results in this study demonstrate that the ultimate axial load capacity and ductility of the columns are affected with various thicknesses of steel sheets and different shapes and number of stiffeners. Also, compressive strength $f_c$ of the concrete and yield stress $f_{yp}$ of the cold-formed steel sheet influence the performance of the columns significantly.

A GMDH-based estimation model for axial load capacity of GFRP-RC circular columns

  • Mohammed Berradia;El Hadj Meziane;Ali Raza;Mohamed Hechmi El Ouni;Faisal Shabbir
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.161-180
    • /
    • 2023
  • In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.

Numerical and experimental analysis on the axial compression performance of T-shaped concrete-filled thin-walled steel

  • Xuetao Lyu;Weiwei Wang;Huan Li;Jiehong Li;Yang Yu
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.383-401
    • /
    • 2024
  • The research comprehensively studies the axial compression performance of T-shaped concrete-filled thin-walled steel tubular (CTST) long columns after fire exposure. Initially, a series of tests investigate the effects of heating time, load eccentricity, and stiffeners on the column's performance. Furthermore, Finite Element (FE) analysis is employed to establish temperature and mechanical field models for the T-shaped CTST long column with stiffeners after fire exposure, using carefully determined key parameters such as thermal parameters, constitutive relations, and contact models. In addition, a parametric analysis based on the numerical models is conducted to explore the effects of heating time, section diameter, material strength, and steel ratio on the axial compressive bearing capacity, bending bearing capacity under normal temperature, as well as residual bearing capacity after fire exposure. The results reveal that the maximum lateral deformation occurs near the middle of the span, with bending increasing as heating time and eccentricity rise. Despite a decrease in axial compressive load and bending capacity after fire exposure, the columns still exhibit desirable bearing capacity and deformability. Moreover, the obtained FE results align closely with experimental findings, validating the reliability of the developed numerical models. Additionally, this study proposes a simplified design method to calculate these mechanical property parameters, satisfying the ISO-834 standard. The relative errors between the proposed simplified formulas and FE models remain within 10%, indicating their capability to provide a theoretical reference for practical engineering applications.