• Title/Summary/Keyword: bacterial cellulose

Search Result 186, Processing Time 0.043 seconds

Preparation of Multi Skin Care Gauze by Blending of Silk Fiber and Separated Cellulose from Waste Milk Pack (견사와 폐 우유팩으로부터 분리한 셀룰로오스가 함유된 복합 위생포 제작)

  • 여주홍;이광길;이용우;김종호
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.2
    • /
    • pp.109-113
    • /
    • 2000
  • The preparation of skin care gauze could be make to mixing separated cellulose from waste milk pack and degummed silk fibroin fiber. Also, its wound covering and anti-bacterial activity were investigated in order to find out the enhancement of their functionality. By the 30% silk fibroin fiber including skin care gauze, the anti-bacterial activity values of Staphylococcus strain are much 4 times higher than of 0∼10% silk fibroin fiber including skin care gauze. The average yield of cellulose from waste milk pack was obtained 50-60%, and their morphologies, physical properties, modulus and biodegradation ratios are studies, respectively.

  • PDF

Cellulose계 섬유의 새로운 전망

  • Cho, Hwan
    • Textile Coloration and Finishing
    • /
    • v.6 no.2
    • /
    • pp.63-70
    • /
    • 1994
  • 최근, Courtaulds Fiber Ltd.사에 의해 개발된, 새로운 용제방사(瑢劑紡絲) cellulose fiber인 Tencel에 대한 관심이 고조되고 있다. 이 글에서는, 먼저 Tencel의 고기능 특성을 cellulose섬유의 구조적 성질과 관련지어 언급코져 한다. 다음으로, 중공섬유막(hollow fiber membranes), sponge, 부직포와 bacterial cellulose, 그리고, 그 들 cellulose로부터 유래된 새로운 상품과 그 응용의 광범위한 분야를 서술하고져 한다. 그 외에, cellulose fibers와 fabric에 대한 가능성 후처리기술들의 최근의 동향도 기술하고져 한다. 끝으로, 생분해성 plastic과 super섬유로서의 cellulose의 특성, 그리고 장래 그들의 기술적 전망도 부언하고져 한다.

  • PDF

Wound Healing Effect of Bacterial Synthesized Cellulose on Full Thickness Skin Defect in the Rat (박테리아 유래 셀룰로오스가 백서의 창상치유에 미치는 영향)

  • Park, Sang-Uk;Lee, Byung-Kwon;Kim, Mi-Sun;Park, Kwan-Kyu;Sung, Woo-Jung;Kim, Hyun-Yeon;Kim, Peter Chan-Woo;Shim, Jeong-Su;Lee, Yong-Jig;Kim, Seong-Ho;Kim, In-Ho;Park, Dae-Hwan
    • Archives of Plastic Surgery
    • /
    • v.38 no.6
    • /
    • pp.733-739
    • /
    • 2011
  • Purpose: Cellulose is a natural substance from plants or bacteria. It is known that bacterial synthesized cellulose has an effect of wound healing. The aim of this study is to show the effect of bacterial synthesized cellulose from citrus on wound healing. Methods: Three full-thickness skin defects were made on the back of Sprague-Dawley rats. Three wounds were treated by vaseline gauze (Group V), Algisite $M^{(R)}$ (Group A) and bacterial synthesized cellulose from citrus (Group C) was used for dressing on skin defect on rats. We analyzed the gross, histological and biochemistry finding. Results: Group C showed more decrease of wound size compared to Group V (33% versus 7.2%) after 14 days. The histologic findings revealed Group C and Group A preceed the process of wound healing rather than Group V (More rapid collagen deposition and neovascularization and reduced inflammation). Also, the expressions of vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-${\beta}1$ were increased in the Group C and Group A compared with the Group V in 7 days. VEGF and TGF-${\beta}1$ expression were decreased in the Group C and Group A in 14 days, however Group V was not decreased at 14 day because of delayed wound healing process. Conclusion: Bacterial synthesized cellulose from citrus affects wound healing by reducing the inflammatory stage. And stimulates wound contracture by the deposition of extracellular matrix, thus preventing the formation of chronic wounds.

Conversion of G. hansenii PJK into Non-cellulose-producing Mutants According to the Culture Condition

  • Park, Joong-Kon;Hyun, Seung-Hun;Jung, Jae-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.383-388
    • /
    • 2004
  • The conversion of a cellulose-producing cell ($Cel^+$) from Gluconacetobacter hansenii PJK (KCTC 10505 BP) to a non-cellulose-producing cell ($Cel^-$) was investigated by measuring the colony forming unit (CFU). This was achieved in a shaking flask with three slanted baffles, which exerted a strong shear stress. The addition of organic acid, such as glutamic acid and acetic acid, induced the conversion of microbial cells from a wild type to $Cel^-$ mutants in a flask culture. The supplementation of $1\%$ ethanol to the medium containing an organic acid depressed the con-version of the microbial cells to $Cel^-$ mutants in a conventional flask without slanted baffles. The addition of ethanol to the medium containing an organic acid; however, accelerated the conversion of microbial cells in the flask with slanted baffles. The $Cel^+$ cells from the agitated culture were not easily converted into $Cel^-$ mutants on the additions of organic acid and ethanol to a flask without Slanted baffles, but some portion of the $Cel^+$ cells were converted to $Cel^-$ mutants in a flask with slanted baffles. The conversion ratio of $Cel^+$ cells to $Cel^-$ mutants was strongly re-lated to the production of bacterial cellulose independently from the cell growth.

Effect of Cellulose Degrading Bacteria Isolated from Wild and Domestic Ruminants on In vitro Dry Matter Digestibility of Feed and Enzyme Production

  • Sahu, N.P.;Kamra, D.N.;Paul, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.199-202
    • /
    • 2004
  • Cellulolytic bacterial strains have been isolated from the faeces of wild (blackbuck, Antilope cervicapra; nilgai, Baselophus tragocamelus chinkara, Gazella gazella spotted deer, Axis axis and hog deer, Cervus porcinus) and rumen liquor of domestic (sheep, Ovis aries) ruminants. Five best cellulose degrading bacterial isolates (Ruminococcus sp.) were used as microbial feed additive along with buffalo rumen liquor as inoculum to study their effect on digestibility of feed and enzyme production in in vitro conditions. The bacterial isolate from chinkara (CHI-2) showed the highest per cent apparent dry matter (DM) digestibility ($35.40{\pm}0.60$), true dry matter digestibility ($40.80{\pm}0.69$) and NDF ($26.38{\pm}0.83$) digestibility (p<0.05) compared to control ($32.73{\pm}0.56$, $36.64{\pm}0.71$ and $21.16{\pm}0.89$, respectively) and other isolates at 24 h of incubation with lignocellulosic feeds (wheat straw and wheat bran, 80:20). The same isolate also exhibited the highest activities of fibre degrading enzymes like carboxymethylcellulase, xylanase, ${\beta}$-glucosidase and acetyl esterase. The bacterial isolate from chinkara (Gazella gazella) appears to have a potential to be used as feed additive in the diet of ruminants for improving utilization of nutrients from lignocellulosic feeds.

Cellulose Production from Gluconobacter oxydans TQ-B2

  • Shiru Jia;Hongyu Ou;Guibing Chen;Park, Du-Bok;Cho, Ki-An;Mitsuyasu Okabe;Cha, Wol-Suk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.166-170
    • /
    • 2004
  • Gluconobacter oxydans that produces the cellulose was isolated. In order to confirm the chemical features of cellulose, various spectrophtometeric analysis were carried out using electron microscopy, X-ray diffractogram, and CP/MAS $\^$13/C NMR. The purified cellulose was found to be identical to that of Acetobacter xylinum. For effective production of cellulose, the various carbon and nitrogen sources, mixture of calcium and magnesium ions, and biotin concentration were investigated in flask cultures. Among the various carbon sources, glucose and sucrose were found to be best for the production of cellulose, with maximum concentration of 2.41 g/L obtained when a mixture of 10 g/L of each glucose and sucrose were used. With regard to the nitrogen sources, when 20 g/L of yeast extract was used, the maximum concentration of bacterial cellulose was reached. The concentration of cellulose was increased with mixture of 2 mM of each Ca$\^$2+/ and Mg$\^$2+/. The optimum biotin concentration for the production of cellulose was in the range of 15 to 20mg/L. At higher biotin concentration (25-35mg/L). the bacterial cellulose production was lower.

Pretreatment of Cane Molasses for Production of Bacterial Cellulose and Its Physico-Chemical Properties (미생물 셀룰로오스 생산을 위한 당밀의 전처리 및 생산된 셀룰로오스의 물리화학적 특성)

  • Jung, Ho-Il;Jeong, Jin-Ha;Jeon, Young-Dong;Lee, Na-Ri;Park, Ki-Hyun;Kim, Yong-Gyun;Park, Geun-Tae;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1432-1437
    • /
    • 2009
  • The aim of this study is to investigate cane molasses pretreatments for the production of cellulose by Acetobacter sp. V6, which has excellent bacterial cellulose (BC) producing capacity in the shaking culture. Among pretreatments of cane molasses, 1% (w/v) tricalcium phosphate (TP) treatment was more efficient in BC production. The physico-chemical properties of BCs that were produced in static and shaking cultures were also investigated. Although BC had an emulsifying ability, its emulsion stability was low. Water holding capacity (WHC) of BC was high; the WHC of BC produced in static culture was 14 times higher than that of $\alpha$-cellulose. In addition, the viscosity of BC was higher than that of $\alpha$-cellulose. Composition analysis by FT-IR showed no difference in composition between BC and plant cellulose. In the crystallinity analysis by XRD, all BC samples showed crystallinity. All BC samples showed reticulated structures consisting of ultrafine cellulose fibriles. Microfibriles of cellulose from static culture were especially more compact than those of cellulose from shaking culture.

Isolation and Characterization of Bacterial Cellulose-Producing Bacteria for Silver Nanoparticle Synthesis (은 나노입자 합성을 위한 Bacterial Cellulose 생산 세균의 분리 및 특성)

  • Yoo, Ji-Yeon;Jang, Eun-Young;Son, Yong-Jun;Park, Soo-Yeun;Son, Hong-Joo
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.120-126
    • /
    • 2018
  • As a basic study for environment-friendly production of bacterial cellulose (BC) dressing with antimicrobial activity, we isolated and identified acetic acid bacteria which are resistant to silver ions and can biosynthesize silver nanoparticles. Furthermore, conditions of BC production by selected strain were also investigated. Strain G7 isolated from decayed grape skin was able to grow in the presence of 0.1 mM $AgNO_3$ which was identified as Acetobacter intermedius based on 16S rRNA gene analysis. BC production was the highest in a medium containing 2% glucose as a carbon source, 2% yeast extract as a nitrogen source, and 0.115% acetic acid as a cosubstrate. Structural properties of BC produced in optimal medium were studied using Fourier-transform infrared spectroscopy and X-ray diffractometer, and it was found that BC produced was cellulose type I that was the same as a typical native cellulose. When strain G7 was cultured in an optimal medium containing 0.1 mM $AgNO_3$, the color of the culture broth turned into reddish brown, indicating that silver nanoparticles were formed. As a result of UV-Vis spectral analysis of the culture, it was found that a unique absorption spectrum of silver nanoparticles at 425 nm was also observed. Scanning electron microscopic observations showed that silver nanoparticles were formed on the surface and pores of BC membrane.