• Title/Summary/Keyword: bacterial fiber

Search Result 104, Processing Time 0.033 seconds

Dietary Effects of Fiber Produced from G\ulcorneruconocacetobacter hansenii on Digestive Tract and Lipid Metabolism in Rats (Gluconoacetobacter hansenii에 의해 생산된 섬유소 섭취가 흰쥐의 소화기관과 지질대사에 미치는 영향)

  • 조성희;이지연;최경호;최영선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.5
    • /
    • pp.802-807
    • /
    • 2002
  • This study was conducted to see effects of dietary bacterial fiber produced by Gluconoucetobacter hansenii on gross structure, and disaccharidase activities of small intestine and body lipid status in rats. Bacterial fiber was prepared by drying and alkali treatment of floating membrane produced IS days after the bacterial culture using coconut juice media. Male Sprague-Dawely rats of 320+10 g were grouped into three and fed 0.5% (w/w) cholesterol diets with three different dietary fibers, i .e. cellulose, and pectin and bacterial fiber, at the level of 2% (w/w). During four-week experimental period, food intakes and body weight gains were not different among three groups. Total lengths and jejunal fragment weights of small intestine did not differ among the three groups but cecal weight was higher in bacterial fiber groups than those of the other two groups. Colon content and fecal dry weight were lower in bacterial fiber group. Sucrase activity of the jejunal mucosa was lower in bacterial fiber group but maltase activity was not different from those of the other two groups. Plasma total cholesterol level was lower and that of HDL-cholesterol higher in pectin group than those of cellulose and bacterial fiber groups, the latter of which did not differ. Both in plasma and liver triglyceride levels were lower in bacterial fiber group than cellulose and pectin groups, and liver cholesterol level was lower in pectin group. Relative liver weights and Plasma activities of GOT md GPT were not different among three groups. It is concluded that bacterial fiber used in the present study had hypotriglyceridemic effect that help improve lipid status in the body.

An Experimental Study of Retting Conditions of Domestic Ramie Fiber (국산 모시섬유의 침지조건에 관한 실험적 연구)

  • 이전숙;최경은
    • Korean Journal of Human Ecology
    • /
    • v.6 no.1
    • /
    • pp.27-34
    • /
    • 2003
  • We investigated the bacterial and chemical retting conditions of ramie grown in Hansan. Bacterial retting was done in troughs at a temperature of 30${\pm}$2$^{\circ}C$ for 1, 2, 3, 4, 5, 6 and 10 days. Chemical retting(CR) was done at the different conditions using sodium silicate (Na$_2$SiO$_3$), sodium carbonate(Na$_2$CO$_3$) and sodium hydroxide(NaOH) as alkali solutions. The retting solution was boiled during 1. 2, 4 and 6 hours respectively at the different concentration(0.5, 2.0, 4.0, 6.0. 8.0 %) with decorticated ramie stems submerged in it. The treated ramie was then rinsing with running tap water thoroughly, which was further soaker in 0.5% acetic acid (v/v) solution for three minutes and washed thoroughly with distilled water. Finally ramie was dried for 2 hours in vacuum oven at 100 $^{\circ}C$. To know change of ramie fiber characteristics retted at the different conditions, weight loss, fiber bundle strength were tested and color, texture, luster etc. were also sensually evaluated. The results were as follows. $.$ Weight loss of ramie retted in each alkali solutions were about 10%, 20% and 30% in sodium silicate, sodium carbonate and sodium hydroxide, respectively. $.$ Chemical retting was faster than bacterial retting, but the color of chemically retted ramies were worse than that of bacterially retted ramies. $.$ The combination of bacterial and chemical processing showed some merits. A combination of either 2 or 3 days of bacterial and then chemical retting might provide the best quality ramie. $.$ Ramie fiber became cottonized ramie when retted in 8% NaOH solution for 6-8hours.

  • PDF

A Review of Interactions between Dietary Fiber and the Gastrointestinal Microbiota and Their Consequences on Intestinal Phosphorus Metabolism in Growing Pigs

  • Metzler, B.U.;Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.603-615
    • /
    • 2008
  • Dietary fiber is an inevitable component in pig diets. In non-ruminants, it may influence many physiological processes in the gastrointestinal tract (GIT) such as transit time as well as nutrient digestion and absorption. Moreover, dietary fiber is also the main substrate of intestinal bacteria. The bacterial community structure is largely susceptible to changes in the fiber content of a pig's diet. Indeed, bacterial composition in the lower GIT will adapt to the supply of high levels of dietary fiber by increased growth of bacteria with cellulolytic, pectinolytic and hemicellulolytic activities such as Ruminococcus spp., Bacteroides spp. and Clostridium spp. Furthermore, there is growing evidence for growth promotion of beneficial bacteria, such as lactobacilli and bifidobacteria, by certain types of dietary fiber in the small intestine of pigs. Studies in rats have shown that both phosphorus (P) and calcium (Ca) play an important role in the fermentative activity and growth of the intestinal microbiota. This can be attributed to the significance of P for the bacterial cell metabolism and to the buffering functions of Ca-phosphate in intestinal digesta. Moreover, under P deficient conditions, ruminal NDF degradation as well as VFA and bacterial ATP production are reduced. Similar studies in pigs are scarce but there is some evidence that dietary fiber may influence the ileal and fecal P digestibility as well as P disappearance in the large intestine, probably due to microbial P requirement for fermentation. On the other hand, fermentation of dietary fiber may improve the availability of minerals such as P and Ca which can be subsequently absorbed and/or utilized by the microbiota of the pig's large intestine.

Low Ruminal pH Reduces Dietary Fiber Digestion via Reduced Microbial Attachment

  • Sung, Ha Guyn;Kobayashi, Yasuo;Chang, Jongsoo;Ha, Ahnul;Hwang, Il Hwan;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.200-207
    • /
    • 2007
  • In vitro rumen incubation studies were conducted to determine effects of initial pH on bacterial attachment and fiber digestion. Ruminal fluid pH was adjusted to 5.7, 6.2 and 6.7, and three major fibrolytic bacteria attached to rice straw in the mixed culture were quantified with real-time PCR. The numbers of attached and unattached Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminocococcus albus were lower (p<0.05) at initial pH of 5.7 without significant difference between those at higher initial pH. Lowering incubation media pH to 5.7 also increased bacterial numbers detached from substrate regardless of bacterial species. Dry matter digestibility, gas accumulation and total VFA production were pH-dependent. Unlike bacterial attachment, maintaining an initial pH of 6.7 increased digestion over initial pH of 6.2. After 48 h in vitro rumen fermentation, average increases in DM digestion, gas accumulation, and total VFA production at initial pH of 6.2 and 6.7 were 2.8 and 4.4, 2.0 and 3.0, and 1.2 and 1.6 times those at initial pH of 5.7, respectively. The lag time to reach above 2% DM digestibility at low initial pH was taken more times (8 h) than at high and middle initial pH (4 h). Current data clearly indicate that ruminal pH is one of the important determinants of fiber digestion, which is modulated via the effect on bacterial attachment to fiber substrates.

Fibrolytic Rumen Bacteria: Their Ecology and Functions

  • Koike, Satoshi;Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.131-138
    • /
    • 2009
  • Among rumen microbes, bacteria play important roles in the biological degradation of plant fiber due to their large biomass and high activity. To maximize the utilization of fiber components such as cellulose and hemicellulose by ruminant animals, the ecology and functions of rumen bacteria should be understood in detail. Recent genome sequencing analyses of representative fibrolytic bacterial species revealed that the number and variety of enzymes for plant fiber digestion clearly differ between Fibrobacter succinogenes and Ruminococcus flavefaciens. Therefore, the mechanism of plant fiber digestion is also thought to differ between these two species. Ecology of individual fibrolytic bacterial species has been investigated using pure cultures and electron microscopy. Recent advances in molecular biology techniques complement the disadvantages of conventional techniques and allow accurate evaluation of the ecology of specific bacteria in mixed culture, even in situ and in vivo. Molecular monitoring of fibrolytic bacterial species in the rumen indicated the predominance of F. succinogenes. Nutritive interactions between fibrolytic and non-fibrolytic bacteria are important in maintaining and promoting fibrolytic activity, mainly in terms of crossfeeding of metabolites. Recent 16S rDNA-based analyses suggest that presently recognized fibrolytic species such as F. succinogenes and two Ruminococcus species with fibrolytic activity may represent only a small proportion of the total fibrolytic population and that uncultured bacteria may be responsible for fiber digestion in the rumen. Therefore, characterization of these unidentified bacteria is important to fully understand the physiology and ecology of fiber digestion. To achieve this, a combination of conventional and modern techniques could be useful.

Effects of Methylcellulose on Fibrolytic Bacterial Detachment and In vitro Degradation of Rice Straw

  • Kim, Min Ji;Sung, Ha Guyn;Upadhaya, Santi Devi;Ha, Jong K.;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1459-1465
    • /
    • 2013
  • Two in vitro experiments were conducted to evaluate the effect of methylcellulose (MC) on i) bacterial detachment from rice straw as well as ii) inhibition of bacterial attachment and fiber digestibility. To evaluate the effect of MC on fibrolytic bacterial detachment (Exp 1), in vitro bacterial cultures with 0.1% (w/v) MC solution were compared with cultures without MC after 8 h incubation. The effect of MC on inhibition of bacterial attachment was determined by comparing with real-time PCR the populations of F. succinogenes, R. flavefaciens and R. albus established on rice straw pre-treated with 0.1% MC with those on untreated straw after incubation for 0, 6 and 12 h (Exp 2). The major fibrolytic bacterial attachment on rice straw showed significantly lower populations with either the addition of MC to the culture or pre-treated rice straw compared to controls (p<0.05). Also, the digestibility of rice straw with MC was significantly lower compared with control (p<0.05). The F. succinogenes population did not show detachment from rice straw, but showed an inhibition of attachment and proliferation on rice straw in accordance with a decrease of fiber digestion. The detachments of Ruminococcus species co-existed preventing the proliferations with subsequent reduction of fiber degradation by MC during the incubation. Their detachments were induced from stable colonization as well as the initial adhesion on rice straw by MC in in vitro ruminal fermentation. Furthermore, the detachment of R. albus was more sensitive to MC than was R. flavefaciens. These results showed the certain evidence that attachment of major fibrolytic bacteria had an effect on fiber digestion in the rumen, and each of fibrolytic bacteria, F. succinogenes, R. flavefaciens and R. albus had a specific mechanism of attachment and detachment to fiber.

Effect of Electrochemical Oxidation Potential on Biofilter for Bacteriological Oxidation of VOCs to $CO_2$

  • Kang Hye-Sun;Lee Jong-Kwang;Kim Moo-Hoon;Park Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.399-407
    • /
    • 2006
  • In this study, an electrical conductive carbon fiber was used as a biofilter matrix to electrochemically improve the biofilter function. A bioreactor system was composed of carbon fiber (anode), titanium ring, porcelain ring, inorganic nutrient reservoir, and VOC reservoir. Electric DC power of 1.5 volt was charged to the carbon fiber anode (CFA) to induce the electrochemical oxidation potential on the biofilter matrix, but not to the carbon fiber (CF). We tested the effects of electrochemical oxidation potential charged to the CFA on the biofilm structure, the bacterial growth, and the activity for metabolic oxidation of VOCs to $CO_2$, According to the SEM image, the biofilm structure developed in the CFA appeared to be greatly different from that in the CF. The bacterial growth, VOCs degradation, and metabolic oxidation of VOCs to $CO_2$ in the CFA were more activated than those in the CF. On the basis of these results, we propose that the biofilm structure can be improved, and the bacterial growth and the bacterial oxidation activity of VOCs can be activated by the electrochemical oxidation potential charged to a biofilter matrix.

The Effects of Fiber Source on Organ Weight, Digesta pH, Specific Activities of Digestive Enzymes and Bacterial Activity in the Gastrointestinal Tract of Piglets

  • Ma, Yongxi;Li, Defa;Qiao, S.Y.;Huang, C.H.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1482-1488
    • /
    • 2002
  • The aim of this study was to explore the effects of fiber sources on gut development and bacterial activity in the gastrointestinal tract of piglets. Eighteen crossbred (Duroc${\times}$Landrace${\times}$Yorkshire) barrows were fed a basal diet based on corn plus soybean meal or similar diets in which a portion of the corn and soybean was replaced by 5% wheat bran or 5% sugar beet pulp. The results indicate that pigs fed diets containing 5% wheat bran or 5% sugar beet pulp had lower liver weights than control pigs (p<0.01). The relative weight of the pancreas in pigs fed diets containing 5% sugar beet pulp was greater than that of control pigs or pigs fed diets containing 5% wheat bran (p<0.05). The pH of the ileal digesta of pigs fed the diet containing 5% wheat bran was higher than that of control pigs or pigs fed the diet containing 5% sugar beet pulp (p<0.05). The lipase activity in the distal jejunum, proximal, and distal ileum of pigs fed the control diet was higher than that of pigs fed the diets containing 5% wheat bran or 5% sugar beet pulp (p<0.05). The concentration of volatile fatty acids anterior to the caecum was greater for the pigs fed the diet containing 5% sugar beet pulp, while the concentration of volatile fatty acids posterior to the ileum was greater for the pigs fed the diet containing 5% wheat bran. This means that sugar beet pulp increased the bacterial fermentation precaecum, while wheat bran increased the bacterial fermentation post-ileum. The concentration of bacterial nitrogen and bacterial protein/total protein in ileal digesta of pigs fed the control diet was higher (p<0.05) than that of pigs fed the diets contained either fiber source. Bacterial protein/total protein in the feces of pigs fed the diet containing 5% sugar beet pulp was higher than that of pigs fed the control diet. This means that inclusion of 5% wheat bran or sugar beet pulp in diets influenced the development of the digestive tract of piglet. The mechanism by which dietary fiber reduced specific activity of lipase needs further consideration. Dietary fiber influenced the bacterial activity in the digestive tract of piglets, sugar beet pulp increased the fermentation in the upper gastrointestinal tract, and while wheat bran increased the fermentation in the lower gastrointestinal tract.

The Relationship to Dietary Fiber Intake and Fecal Bile Acid Profiles (식이 섬유소 섭취상태와 변 답즙산 조성과의 관계)

  • 황은희
    • Journal of Nutrition and Health
    • /
    • v.29 no.1
    • /
    • pp.41-49
    • /
    • 1996
  • Bacterial transformation of bile acids is possibly involved in colorectal carcinogenesis. n several epidemiological studies, the fecal bile acid dietary fiber are related to the indicence of colonic cancer. This study investigated the influence of age, dietary fiber intake on fecal bile acid profiles in healthy subject. The dietary fiber were assessed by mean of 24 hour dietary recall method, the subjects consist of 238 members aged 20 to 64 years old and feces are collected from the subjects. Fecal bile acids and neutral sterols were analyzed by gas chromatography. Mean dily crude fiber intake level was 7.7$\pm$1.4g(dietary fiber : 16.7$\pm$3.5g), dietary fiber intake range being 6.5-36.8g. The dietary fiber intake in elederly subject was significantly lower than in the other younger groups. Dietary fiber intakes was negatively correlated with the total bil acid concentation in feces. Probably, a decrease in dietary fiber intake results in higher fecal bile acid concentrations. The secondary bile acid concentration is related to the colon cancer, deoxycholic acid and lithocholic acid were significantly higher in elderly subjects. Concentration of fecal total bile acid, deoxycholic acid, coprostanol, coprostanone were higher in low dietary fiber intake group. These results suggest that the risk factor for colon cancer might be reduced, when dietary fibers are consummed more.

  • PDF

Effects of Dietary Fiber on the Bacterial Enzymes and Putrefactive Metabolite in Aged Rats (주요 식이섬유질원이 첨가된 식이가 노화 흰쥐의 장내효소 및 유해산물에 미치는 영향)

  • 강어진;이상선;양차범;신현경
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.5
    • /
    • pp.488-492
    • /
    • 1998
  • This study was performed to investigate the influcence of various dietary fiber sources in Korea for activities of bacterial enzymes (${\beta}$-glucosidase, ${\beta}$-glucuronidase) and amounts of putrefactive product (indole) in aged rats. ${\beta}$-Glucosidase activity in the intestinal content was significantly lower in the seamustard 15% group than in other groups whereas the activity of ${\beta}$-glucuronidase was higher in the mugwort 15% group than other experimental groups. The amount of indole and pH in the intestinal content of aged rats were significantly lower in mugwort groups than in other groups.

  • PDF