• Title/Summary/Keyword: bacteriophage

Search Result 287, Processing Time 0.03 seconds

Polarity Index Dependence of M13 Bacteriophage-based Nanostructure for Structural Color-based Sensing

  • Lee, Yujin;Moon, Jong-Sik;Kim, Kyujung;Oh, Jin-Woo
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.12-16
    • /
    • 2017
  • Color sensor systems based on M13 bacteriophage are being considerably researched. Although many studies on M13 bacteriophage-based chemical sensing of TNT, endocrine disrupting chemicals, and antibiotics have been undertaken, the fundamental physical and chemical properties of M13 bacteriophage-based nanostructures require further research. A simple M13 bacteriophage-based colorimetric sensor was fabricated by a simple pulling technique, and M13 bacteriophage was genetically engineered using a phage display technique to exhibit a negatively charged surface. Arrays of structurally and genetically modified M13 bacteriophage that can determine the polarity indexes of various alcohols were found. In this research, an M13 bacteriophage-based color sensor was used to detect various types of alcohols, including methanol, ethanol, and methanol/butanol mixtures, in order to investigate the polarity-related property of the sensor. Studies of the fundamental chemical sensing properties of M13 bacteriophage-based nanostructures should result in wider applications of M13 bacteriophage-based colorimetric sensors.

Evaluation of Anti-SE Bacteriophage as Feed Additives to Prevent Salmonella enteritidis (SE) in Broiler

  • Kim, K.H.;Lee, G.Y.;Jang, J.C.;Kim, J.E.;Kim, Y.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.386-393
    • /
    • 2013
  • This experiment was conducted to evaluate anti-Salmonella enteritidis (anti-SE) bacteriophage as feed additives to prevent Salmonella enteritidis in broilers. The experimental diets were formulated for 2 phases feeding trial, and 3 different levels (0.05, 0.1 and 0.2%) of anti-SE bacteriophage were supplemented in basal diet. The basal diet was regarded as the control treatment. A total of 320 1-d-old male broilers (Ross 308) were allotted by randomized complete block (RCB) design in 8 replicates with 10 chicks per pen. All birds were raised on rice hull bedding in ambient controlled environment and free access to feed and water. There were no significant differences in body weight gain, feed intake and feed conversion ratio (FCR) at terminal period among treatments (p>0.05). Relative weights of liver, spleen, abdominal fat and tissue muscle of breast obtained from each anti-SE bacteriophage treatment were similar to control, with a slightly higher value in anti-SE bacteriophage 0.2%. In addition, a numerical difference of glutamic-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT) and LDL cholesterol level was observed in the 0.2% anti-SE bacteriophage application even though blood profiles were not significantly affected by supplemented levels of anti-SE bacteriophage (p>0.05). In the result of a 14 d record after Salmonella enteritidis challenge of 160 birds from 4 previous treatments, mortality was linearly decreased with increasing anti-SE bacteriophage level (p<0.05), and Salmonella enteritidis concentration in the cecum was decreased with increasing levels of anti-SE bacteriophage (p<0.05). Based on the results of this study, it is considered that supplementation of 0.2% anti-SE bacteriophage may not cause any negative effect on growth, meat production, and it reduces mortality after Salmonella enteritidis challenge. These results imply to a possible use of anti-SE bacteriophage as an alternative feed additive instead of antibiotics in broilers diet.

Studies on the receptor for bacteriophage N4 infection (Bacteriophage N4의 receptor에 대한 연구)

  • 채건상;김선정;김창수;유욱준
    • Korean Journal of Microbiology
    • /
    • v.25 no.1
    • /
    • pp.52-56
    • /
    • 1987
  • The evidences that Lam B protein of E. coli is used as a receptor for infections of bacteriophage N4 as well as bacteriophage lambda were obtained from the following experimental results. First, all of the isolated lambda resistant dlones possessing foreign DNA fragments in the plasmids were also resistant to bacteriophage N4, but not to bacteriophage $\phi$ 80, T4 and T7. Second, when the plasmid DNA was treated with various restriction enzymes and ligated to delete the total or a portion of the foreign DNA fragments, the deleted plasmids lost the resistant activities to lambda and N4, simultaneously. Third, after amplification of Lam B protein about 200 times by inducing the protein using maltose as a sole carbon source, the host E. coli became sensitive to both lambda and N4.

  • PDF

Synergistic Inhibition by Bacteriocin and Bacteriophage against Staphylococcus aureus

  • Kim, Seon-Gyu;Lee, Young-Duck;Park, Jong-Hyun;Moon, Gi-Seong
    • Food Science of Animal Resources
    • /
    • v.39 no.6
    • /
    • pp.1015-1020
    • /
    • 2019
  • Staphylococcus aureus is a representative pathogenic bacterium carefully controlled in the dairy industry because it causes bovine mastitis and thus, can enter the dairy chain. Furthermore, the emergence of multi-drug resistant S. aureus is a big problem. We previously isolated a Lactococcus lactis strain producing a bacteriocin that exhibited strong antimicrobial activity against S. aureus. In this study, we investigated the synergistic inhibition of S. aureus by the bacteriocin and a bacteriophage (SAP84) which is specific to the organism. The bacteriocin (12.5-100 AU/mL) inhibited the growth of S. aureus KCTC 3881 in a dose-dependent manner, as did the bacteriophage SAP84 (0.001-1 MOI; multiplicity of infection). Co-treatment with the bacteriocin (100 AU/mL) and the bacteriophage (0.1 MOI) significantly inhibited the growth of S. aureus compared to each treatment alone (bacteriocin or bacteriophage), indicating the two components showed synergistic inhibition of S. aureus. Therefore, the bacteriocin and bacteriophage combination can be used as a good strategy for controlling pathogenic bacteria.

Complete genome sequence of a novel bacteriophage SPG24 isolated from Cheonggukjang (청국장에서 분리된 신생 박테리오파지 SPG24의 전체 염기 서열)

  • Kim, Chaehyun;Lee, Gyu-Cheol;Kim, In Kyo;Kim, Seok Cheon;Lee, Oh Hyung;Lee, Chan Hee
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.144-145
    • /
    • 2017
  • A Bacillus subtilis strain, designated G24, was isolated from grape during a study on the fermentation of Cheongkukjang, Korean traditional fast-fermented bean paste. Also, a newly isolated bacteriophage SPG24, which was found to inhibit the fermentation process, uses B. subtilis G24 as a host. The complete genome sequence of the bacteriophage SPG24 was 152,060 bp in length, with a G+C content of 42.2%. This sequence included 232 ORF; 58 forward ORFs and 174 reverse ORFs.

Effects of Dietary Supplementation of Bacteriophage on Growth Performance, Nutrient Digestibility, Blood Profiles, Carcass Characteristics and Fecal Microflora in Broilers (육계 사료 내 Bacteriophage의 첨가가 생산성, 영양소 소화율, 혈액 특성, 도체 특성 및 분내 미생물 조성에 미치는 영향)

  • Kim, Seung Cheol;Kim, Jae Won;Kim, Jung Un;Kim, In Ho
    • Korean Journal of Poultry Science
    • /
    • v.40 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • This experiment was conducted to investigate the effects of bacteriophage SE supplementation on growth performance, nutrient digestibility, blood profiles, visceral organ weight, meat quality and excreta microflora in broilers. A total of 340 1-d-old ROSS 308 broilers (mixed gender) with an initial average body weight (BW) of $41.71{\pm}0.16$ g were randomly allotted to 4 treatments with 5 replicate pens per treatment and 17 broilers per pen for 31 days. Dietary treatments were: 1) CON, control diet, 2) SE05, CON+0.05% bacteriophage, SE 3) SE10, CON+0.10% bacteriophage SE, and 4) SE15, CON+0.15% bacteriophage SE. During d 15 to 31, broilers fed SE15 diet had a higher (P<0.05) body weight gain than broilers fed CON diet. Overall, body weight gain in SE10 and SE15 was greater (P<0.05) than that in CON. Apparent total tract nutrient digestibility and blood characteristics did not differ (P>0.05) among treatments. The water holding capacity was increased (P<0.05) in SE15 compared with CON. Other meat quality in terms of pH value, breast muscle color ($L^*$, $a^*$, $b^*$) and drip loss were unaffected by dietary supplementation with bacteriophage SE. The visceral weight of bursa of Fabricius was increased (P<0.05) in broilers fed the bacteriophage SE incorporated diets compared with those fed the CON diet. No difference (P>0.05) was observed in visceral weight of liver, spleen, breast muscle, abdominal fat, gizzard and excreta concentrations of Lactobacillus, Clostridium perfringens, Escherichia coli, and Salmonella. In conclusion, dietary supplementation with 0.10 and 0.15% bacteriophage SE could improve the growth performance, breast muscle water holding capacity and bursa of Fabricius visceral weight in broilers.

Phage Particle Proteins and Genomic Characterization of the Lactobacillus plantarum Bacteriophage SC 921. (Lactobacillus plantarum Bacteriophage SC 921의 phage particle protein 및 genome의 특성)

  • 김재원;신영재;심영섭;유승구;윤성식
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.117-121
    • /
    • 1998
  • Bacteriophage SC 921 of Lactobacillus plantarum, isolated from kimchi, showed high lytic effects at 0.2 M.O.I. level. The phage particle contained 4 major proteins (48, 34, 32, 29 kDa). Intact DNA of phage SC 921 is a double stranded linear molecule, and the genomic size is approximately 66.5 kilobase pairs (kbp). Restriction analysis of the genome showed that Sma I gave single site cut and Xba I gave 2 site cuts, while Cla I, Kpn I, and EcoR I formed 4, 5, and 6 cuts, respectively. Hind III digested phage DNA to many fragments. A restriction map of genomic DNA was constructed using the restriction endonuclease Kpn I, Sma I, and Xba I. Bacteriophage SC 921 was compared with B2 phage which had been reported to infect Lactobacillus plantarum ATCC 8014(KCCM l1322). Bacteriophage SC 921 differs from B2 phage at least in thr size of its genome and phage particle proteins.

  • PDF

Interaction of the Bacteriophage P2 Tin Protein and Bacteriophage T4 gp32 Protein Inhibites Growth of Bacteriophage T4

  • Jin, Hee-Kyung;Kim, Min-Jung;Park, Chan-Hee;Park, Jung-Chan;Myung, Hee-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.724-726
    • /
    • 2001
  • The growth of baceriophage T4 is inhibited by the presence of the tin gene product o bacteriophage P2. The interaction between purified Tin and gp32 proteins was observed using coimmunoprecipitation experiments. The in vivo interaction was confirmed by yeast two-hybrid experiments. A deletion analysis showed that the Asp 163 region of gp32 to DNA substrates was not affected by the presence of Tin, Thus, it would appear that the inhibition of 4 growth by Tin was due to a protein-protein interaction rather than affecting the DNA-binding ability of gp32.

  • PDF

Genomic Features and Lytic Activity of the Bacteriophage PPPL-1 Effective against Pseudomonas syringae pv. actinidiae, a Cause of Bacterial Canker in Kiwifruit

  • Park, JungKum;Lim, Jeong-A;Yu, Ji-Gang;Oh, Chang-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1542-1546
    • /
    • 2018
  • Bacterial canker in kiwifruit is caused by Pseudomonas syringae pv. actinidiae (Psa). In this study, the bacteriophage PPPL-1 effective against Psa was characterized. Belonging to the Podoviridae family, PPPL-1 was effective against most Psa strains as well as most Pseudomonas syringae pathovars. PPPL-1 carries a 41,149-bp genome with 49 protein coding sequences and is homologous to the previously reported phiPSA2 bacteriophage. The lytic activity of PPPL-1 was stable up to $40^{\circ}C$, within a range of pH 3-11 and under 365 nm UV light. These results indicate that the bacteriophage PPPL-1 might be useful to control Psa in the kiwifruit field.

Effect of Bacteriophages on Viability and Growth of Co-cultivated Weissella and Leuconostoc in Kimchi Fermentation

  • Kong, Se-Jin;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.558-561
    • /
    • 2019
  • This study aimed to understand the survival and growth patterns of bacteriophage-sensitive Weissella and Leuconostoc strains involved in kimchi fermentation. Dongchimi kimchi was prepared, and Weissella and Leuconostoc were co-cultivated in the dongchimi broth. Weissella cibaria KCTC 3807 growth was accompanied by rapid lysis with an increase in the bacteriophage quantity. Leuconostoc citreum KCCM 12030 followed the same pattern. The bacteriophage-insensitive strains W. cibaria KCTC 3499 and Leuconostoc mesenteroides KCCM 11325 survived longer under low pH as their growth was not accompanied by bacteriophages. The bacteriophage lysate of W. cibaria KCTC 3807 accelerated and promoted the growth of Leuconostoc. Overall, our results show that bacteriophages might affect the viability and population dynamics of lactic acid bacteria during kimchi fermentation.