• 제목/요약/키워드: ball-bearing spindle

검색결과 93건 처리시간 0.025초

볼-유정압 복합베어링을 갖는 고정밀 주축의 회전특성에 관한 연구 (Rotational Characteristics of High Precision Spindle Unit with Ball-Hydrostatic Bearing)

  • 이찬홍;이후상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.663-667
    • /
    • 2000
  • The spindle unit is core parts in high precision machine tools. Diverse static and dynamic charateristics of spindle unit are needed for special purpose of machine tools. Specially, high damping ability may be very useful to high precision and high speed spindle unit. But commercial bearing system has very low damping value and high stiffness. In this paper, the combined bearing system with ball-hydrostatic bearing is suggested for high damping spindle unit. The suggested bearing system has 30% damping ability more than general ball bearing's. The average rotational accuracy of spindle with combined bearing in working speed is 24% better than with ball bearing. The unbalance rotating experiment in spindle show that rotating error with combined bearing is only half value of with ball bearing.

  • PDF

고속 회전시 베어링 강성강하를 고려한 주축 유니트의 최적화 (Optimization of Spindle Units Considering the Decrease of Bearing Stiffness at High Speed Revolution)

  • 이찬홍
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.717-723
    • /
    • 2010
  • Radial stiffness of angular contact ball bearings are decreased remarkably at high speed revolution, because the inner and outer ball contact angle with races arc changed under the ball centrifugal forces at high speed. In the past, the optimizations of spindle units were done under the assumption of unchanged bearing stiffness for the whole speed range. But the bearing stiffness is changed and the dimension of optimum spindle is also changed with speed. In the design phase, only one model of many optimum spindle models with speed should be selected. As optimization criterion, the area of transfer function at spindle nose is proposed to estimate simply and accurately improvement of dynamic characteristics in spindle units. Finally, according to many analyses of diverse spindle models with decreased bearing stiffness, the spindle with shorter bearing span is better than longer bearing span from the viewpoint of dynamic characteristics.

볼 베어링에 의해 발생하는 HDD 회전축계 NRRO의 온도 상승에 따른 변화 (Analysis of NRRO Caused by Ball Bearing in a HDD Spindle System at Elevated Temperature)

  • 김동균;장건희
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.792-800
    • /
    • 2004
  • This research investigates the non-repeatable runout (NRRO) of a HDD spindle system at elevated temperature by analyzing the characteristics of a ball bearing and the natural vibration characteristics of a HDD spindle system due to the effect of elevated temperature. It shows that the elevated temperature results in the increase of the contact angle and the decrease of the deformation of the ball bearing in a HDD spindle system. The variation of bearing frequencies, which are dependent on the cosine function of contact angle, is almost negligible at elevated temperature. However, the decrease of bearing deformation at elevated temperature reduces the stiffness of the ball bearing and the natural frequencies of a HDD spindle system consequently. The latter has a significant effect on the amplitude and the frequency distribution of NRRO at elevated temperature.

복합베어링으로 지지된 스핀들의 동적 해석 (Dynamic Analysis of Spindle Supported by Multiple Bearings of Different Types)

  • 통반칸;배규현;홍성욱
    • 한국정밀공학회지
    • /
    • 제32권2호
    • /
    • pp.117-125
    • /
    • 2015
  • This paper presents a dynamic modeling method for the indeterminate spindle-bearing system supported by multiple bearings of different types. A spindle-bearing system supported by ball and cylindrical roller bearings is considered. The de Mul's bearing model is extended for calculating ball and cylindrical roller bearing stiffness matrices with inclusion of centrifugal force and gyroscopic moment. The dependence between spindle shaft reaction forces and bearing stiffness is effectively resolved using an iterative approach. The spindle rotor dynamics is established with the Timoshenko beam theory based finite elements. The spindle reaction forces, bearings stiffness and spindle natural frequencies are obtained with taking into account spindle radial load, ball bearing axial preload and rotational speed effects. The developed method is verified by comparing the simulation results with those from a commercial program.

고감쇠 주축 시스템을 위한 베어링의 복합배열에 관한 연구 (A Combined Bearing Arrangement for High Damping Spindle Systems)

  • Lee, C.H.
    • 한국정밀공학회지
    • /
    • 제13권10호
    • /
    • pp.139-145
    • /
    • 1996
  • The machining accuracy and performance is largely influenced by the static, dynamic and thermal characteristics of spindle systems in machine tools, because the spindle system is a intermedium for cutting force from tool and machine powef from motor. Large cutting force and power are transmitted by bearing with a point or line contact. So, the spindle system is the static and dynamic weakest point in machine structure. For improvement of static stiffness of spindle system can be changed design parameters, such as diameter of spindle, stiffness of bearing and bearing span. But for dynamic stiffness, the change of the design parameters are not useful. In this paper, the combined bearing arrangement is suggested for high damping spindle system. The combined bearing arrangement is composed of tandem double back to back arrangement type ball bearins and a high damping hydrostatic bearing. The variation of static deflection and amplitude in first natural frequency is evaluated with the location of hydrostatic bearing between front and rear ball bearing. The optimized location of hydrostatic bearing for high static and dynamic stiffness is determined rapidly and exactly using the mode shape and transfer function of spindle. The calculation of damping effect on vibration by unbalance of grinding wheel and pulley in optimized spindle system is carried out to verify the validity of the combined bearing arrangement. Finally, the simulation of grinding process show that the surface roughness of workpiece with high damping spindle system is 60% better than with ball bearing spindle system.

  • PDF

고속 주축 베어링용 예압장치의 볼 가이드 이송특성 (Feeding Characteristics of Ball Guide in High Speed Spindle's Bearing Preload Units)

  • 이찬홍
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.685-691
    • /
    • 2011
  • The Bearing preload units are used for stable rotational movements of high speed spindles. The feeding mechanism of the preload unit is important to prevent overheat of bearings and to keep constant bearing load under thermal deformation of spindle unit. In this study, ball slide guide and ball bush as feeding mechanism of preload unit are selected. The maximum static friction force, radial stiffness and damping ratio of ball slide guide with ball load, ball number and ball size are widely investigated. In conclusion, the surface of ball slide guide must be heat treated to reduce static friction force. The number and size of ball are increased to control sensitive bearing preload force.

베어링 배열방식이 고속 스핀들의 동특성에 미치는 영향 (Effects of Bearing Arrangement on the Dynamic Characteristics of High-speed Spindle)

  • 홍성욱;최춘석;이찬홍
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.854-863
    • /
    • 2013
  • High-speed spindle systems typically employ angular contact ball bearings, which can resist both axial and radial loading, and exhibit high precision and durability. We investigated the effects of the arrangement of the angular contact ball bearings on the dynamics of high-speed spindle systems. The spindle dynamics were studied with a number of spindle-bearing models, and the location of the bearings was varied, along with the rotational speed and the preload. A finite element spindle model and a bearing model were used, and simulated data showed that the bearing arrangement significantly affected the spindle dynamics. Furthermore, the main effects were due to the cross coupling terms between the transverse and rotational motions of the ball bearings. The coupling stiffness terms were found to influence the spindle dynamics, depending on the mode shapes. An extensive discussion is provided on the effects of the bearing arrangement on the dynamics of the spindle.

경방향 하중을 받는 스핀들 베어링 계의 동특성 연구 (Study on Dynamic Characteristics of Spindle-bearing System Subjected to Radial Load)

  • 최춘석;홍성욱
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.740-746
    • /
    • 2013
  • Angular contact ball bearings are often adopted for a high-speed spindle owing to their durability against axial and radial loads. The dynamic characteristics of an angular contact ball bearing, however, are very complicated because they are dependent on the applied loads as well as on the system configuration. This study systematically analyzes the radial-load-dependent characteristics of spindles as well as angular contact ball bearings. Toward this end, a spindle dynamic model along with the bearing dynamics model is established. An iterative solution algorithm is implemented to resolve the statically indeterminate problem associated with spindle-bearing systems subjected to radial load. Two numerical examples are provided to investigate the spindle and bearing characteristics as a function of radial load with regard to the system configuration.

온도 변화에 따른 HDD 회전축계 동특성 해석 (Analysis of Dynamic Characteristics of a HDD Spindle System Supported by Ball Bearing Due to Temperature Variation)

  • 김동균;장건희;한재혁;김철순
    • 한국소음진동공학회논문집
    • /
    • 제13권10호
    • /
    • pp.805-812
    • /
    • 2003
  • This paper presents a method to investigate the characteristics of a ball bearing and the dynamics of a HDD spindle system due to temperature variation. Finite element model is developed for the rotating and stationary parts of a HDD spindle system separately to determine their thermal deformations by using ANSYS, a finite element program. Then, the relative position of the rotating part with respect to the stationary part is determined by solving the equilibrium equation of the contact force between upper and lower ball bearings. The validity of the proposed method is verified by comparing the theoretical natural frequencies of a HDD spindle system with the experimental ones before and after temperature variation. It shows that the elevated temperature results in the increase of contact angle and the decrease of bearing deformation, contact force and bearing stiffness, which result in the decrease of the natural frequencies of a HDD spindle system.

온도 변화에 따른 HDD 회전축계 동특성 해석 (Analysis of Dynamic Characteristics of a HDD Spindle System Supported by Ball Bearing Due to Temperature Variation)

  • 김동균;장건희;한재혁;김철순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.578-584
    • /
    • 2003
  • This paper presents a method to investigate the characteristics of a ball bearing and the dynamics of a HDD spindle system due to temperature variation. Finite element model is developed fer the rotating and stationary parts of a HDD spindle system separately to determine their thermal deformations by using ANSYS, a finite element program. Then, the relative position of the rotating part with respect to the stationary part is determined by solving the equilibrium equation of the contact force between upper and lower ball bearings. The validity of the proposed method is verified by comparing the theoretical natural frequencies of a HDD spindle system with the experimental ones before and after temperature variation. It shows that the elevated temperature results in the increase of contact angle and the decrease of bearing deformation, contact force and bearing stiffness, which result in the decrease of the natural frequencies of a HDD spindle system.

  • PDF