• Title/Summary/Keyword: basic wood density

Search Result 48, Processing Time 0.018 seconds

Evaluation of Genetic Parameters of Growth Characteristics and Basic Density of Eucalyptus pellita Clones Planted at Two Different Sites in East Kalimantan, Indonesia

  • Alfia Dewi FADWATI;Fanny HIDAYATI;Mohammad NA'IEM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.222-237
    • /
    • 2023
  • Eucalyptus pellita is one of the fast-growing tree species and has become predominant in Indonesian forest plantations. Meanwhile, tree breeding programs with clone development are the best way to provide greater genetic advantages. A better understanding of genetic control on growth and basic density in E. pellita is important for increasing wood productivity and quality. In this study, growth characteristics (tree height, diameter, and volume), basic density and its genetic parameters (heritability, genetic gain and genetic correlation) were determined. The number of clones tested in both trials was 50, divided into 5 blocks, and 5 trees/plot. The results showed that there were significant differences in growth and basic density among clones. There was an interaction between genetics and the environment further indicating the existence of unstable clones. The high heritability was found in tree height (0.82-0.86), diameter (0.82-0.90), and basic density (0.91-0.93). This implies that E. pellita has good opportunities for genetic improvement to increase wood productivity and quality. In addition, the results of genetic correlations among growth characteristics (height, diameter, and volume) and basic density showed positive moderate to highly significant value. It is suggested that these characters may be used to the advantage of the breeder for bringing improvement in these traits simultaneously. Therefore, this study provides important information of the genetic improvement of wood quality in E. pellita in Indonesia.

Development of a Basic Wood Density for Carbon Accounting in Bamboo Forests (대나무 탄소계정을 위한 목재기본밀도 개발)

  • Eunji Hae;Jaeyeop Chung;Sunjung Lee;Hyejung Roh;Yeongmo Son
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.188-194
    • /
    • 2023
  • This study aimed to derive the basic wood density, one of several carbon emission factors, for carbon accounting of bamboo forests in Korea. Bamboo is mainly distributed in Jeollanam-do and Gyeongsangnam-do provinces, and 101 sample trees were selected for each of the three species (Phyllostachys nigra var. henonis, P. bambusoides, and P. pubescens). The basic wood density derivation used the KS F 2098 method. The measurements showed that the basic wood density was 0.83 g/cm3 for P. nigra var. henonis, 0.81 g/cm3 for P. bambusoides, and 0.72 g/cm3 for P. pubescens. However, the bamboo distribution area in Korea is not very large, and P. pubescens grows in one area only. Therefore, the basic wood density that can be applied to bamboo was 0.79 g/cm3. Evaluation of the uncertainty of the extracted basic wood density showed a very low value of 1.61%, which confirmed the reliability of the basic wood density derived from this analysis. The basic wood density, biomass expansion factor, and root-to-shoot ratio were used to calculate the carbon storage capacity of one bamboo plant and expanded to calculate the capacity for a hectare of bamboo. Carbon storage and absorption of bamboo were calculated by applying a carbon-emission factor, such as the basic wood density. These study results are expected to contribute to the carbon-neutral policy and forest management direction in Korea.

Studies on the Collapse of four domestic Fagaceae Species (우리나라산(産) 참나무과(科) 4수종(樹種)의 Collapse에 관한 연구(硏究))

  • Park, Jong-Su;Kim, Su-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.37-44
    • /
    • 1993
  • The collapse of four domestic Fagaceae species was observed in relation with their moisture content(MC), basic density, P (Percent of moisture content saturation of the wood) and Q (Percent of cell cavity volume containing water) and the variation of collapse phenomenon in the cross section of stem was also investigated. The results were summarized as follows : The values of collapse in each species were great in order of Quercus dentata, Quercus variabilis, Quercus aliena and Quercus mongolica and the values were higher in heartwood than in sapwood in all of specimen. MC, basic density, P and Q were important factors which affected on the occurance of collapse and the collapse phenomenon was decreased from pith to bark.

  • PDF

The Mechanical Properties of New Zealand-grown Radiata Pine (뉴질랜드산(産) 라디에타 소나무의 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究))

  • Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.12-17
    • /
    • 1996
  • This study was carried out to investigate some mechanical properties for wood rational utilization of heartwood and sapwood in radiata pine according to basic density, ring width and proportion of latewood which were grown in New Zealand. This result were summarized as follow: Heartwood showed 35.78(MPa) of the compression strength parallel to the grain while sapwood showed 42.08(MPa). The modulus of rupture in static bending was higher in sapwood showing 86.12(MPa) than in heartwood 72.99(MPa) Heartwood had 7.38(GPa) for the modulus of elasticity in static bending and sapwood 8.17(GPa). As the basic density and proportion of latewood increased: compression strength parallel to the grain, MOR and MOE in static bending had a tendency to increase. As ring width increased, the mechanical properties decreased.

  • PDF

Use of a Bootstrap Method for Estimating Basic Wood Density for Pinus densiflora in Korea (부트스트랩을 이용한 소나무의 목재기본밀도 추정 및 평가)

  • Pyo, Jung Kee;Son, Yeong Mo;Kim, Yeong Hwan;Kim, Rae Hyun;Lee, Kyeong Hak;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.392-396
    • /
    • 2011
  • The purpose of this study was to develop the basic wood density (Abbreviated BWD) for Pinus densiflora and to evaluate the applicability of bootstrap simulation method. The data sets were divided into two groups based on eco-types in Korea, one from Gangwon type and the other from Jungbu type. The estimated BWDs derived from bootstrap simulation, which is one of the non-parametric statistics, were 0.418 ($g/cm^3$) in the Pinus densiflora in Gangwon while 0.464 ($g/cm^3$) in the Pinus densiflora in Jungbu. To evaluate the bootstrap simulation, the mean BWD, standard error and 95% confidence interval of probability density were estimated. The number of replication were 100, 500, 1,000, and 5,000 times that showed constant 95% confidence interval, while tended to decrease in terms of standard errors. The results of this study could be very useful to apply basic wood density values to calculate reliable carbon stocks for Pinus densiflora in Korea.

A Study on the Physical and Mechanical Properties of the Board Composed of Wood Particle and Steel Wire (목재(木材)파아티클과 철선복합(鐵線複合)보오드의 물리적(物理的) 및 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究))

  • Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.22-37
    • /
    • 1988
  • In tendancy of manufacturing beam with laminating particleboard, it was thought that if the properties, especially mechanical properties, of particleboard be reinforced, the mechanical properties of particleboard-laminated beam would be also improved. So in this study the particleboard was reinforced with composing of wood particle and steel wire. This study was carried out to obtain the basic physical and mechanical properties of board composed of wood particle and steel wire, especially tensile strength and compressive strength which are the important factors of the lamina of beam, in order to estimate whether the board, composed of wood particle and steel wire could be to improve the properties of the particleboard- laminated beam. The results obtained were summarized as follows: 1. The board composed of wood particle and steel wire in accordance with lower board density took better thickness swelling. 2. The board with lower board density was improved in higher value of tensile strength with more steel wires in prescribed cross section area of the board. for example, the board of density 0.5 showing 140% improved value. 3. In compressive strength, the board with lower board density was also improved in hjgher value with more steel wires in prescribed cross section area.

  • PDF

A Study on the Mechanical Properties of the Board Composed of Wood Particle and Steel Wire - Focusing on Bending Strength - (목재(木材)파아티클과 철선복합(鐵線複合)보오드의 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究) - 휨강도를 중심으로 -)

  • Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.9-17
    • /
    • 1990
  • When manufacturing beam by laminating particleboards, the mechanical properties of particleboad-laminated beam would be also improved if the properties, especially mechanical properties of particleboad be reinforced. In this study, steel wires were used to reinforce particleboard. This study was carried out to obtain the basic mechanical properties of the board composed of wood particle and steel wires, focusing on bending strength which is the important factors in laminated beam and it was tried to estimate the relationship between the properties of the particleboard-laminated beam. and the proportion of steel wires to wood particles in particleboards. The result obtained can be summarized as follows: 1. The more steel wires used in boards, the higher value of modulus of rupture in bending was obtained, For example. the density 5 board composed of 14 numbers of steel wires showing 55% improved value than control board. 2. The board with lower density was also made better in higher value of elasticity, the density 0.5 board with 14 numbers of steel wires improved by 170%, the density 0.6 board by 86%, the 0.7 board by 37% and the 0.8 board by 26%. 3. The work to maximum load was improved with more steel wires. for example, the density 0.8 board with 14 numbers of steel wires improved by 31%.

  • PDF

Anatomical Characteristics and Air-dry Density of Young Trees of Teak Clones Planted in Indonesia

  • Hidayati, Fanny;Ishiguri, Futoshi;Marsoem, Sri Nugroho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.463-470
    • /
    • 2017
  • The objectives of this study are to obtain the basic knowledge of anatomical characteristics and wood properties of thinning trees of young teak (Tectona grandis L.F.) for fulfill the timber demand in Indonesia. Nine thinning trees of 5-year-old teak clone trees were used for analyzing the cell morphology and air-dry density. Vessel diameters in pore and outer pore zones were 165 and $90{\mu}m$, respectively. Mean value of fiber diameter, cell wall thickness, and fiber length in outer pore zone were $14.6{\mu}m$, $2.07{\mu}m$, and 1.04 mm, respectively. In addition, mean value of air-dry density was $0.55g/cm^3$. The measurement and values of vessel diameter, fiber diameter, cell wall thickness, fiber length and air-dry density in the experimental had lower than those in the older teak. Therefore, it could be suggested that the wood from thinning young teaks was not appropriate as construction material, but it could be used for furniture which do not need high of strength properties. Furthermore, since the measurements values of anatomical characteristics were still increasing from pith to bark, it could be suggested that 5-year-old teak clones are still in a juvenile phase. Positively significant correlations were found between air-dry density and cell wall thickness, indicating that cell wall thickness is strongly correlated with wood density of teak.

An Experimental Study for Cement Setting Property of Wood Chip Board Using Construction Waste Wood (건설폐목을 이용한 목질계보드의 시멘트응결 특성에 관한 실험적 연구)

  • Kim, Sae Hoan;Oh, Sae Chool
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.80-86
    • /
    • 2007
  • In this study we experimented setting time and basic properties as waste wood fiber and sodium silicate substitution rate to reuse waste wood fiber produced in construction field to wood chip board. To do this construction waste woods were crushed with the size less than 10mm, mixed with the rate of 1:2, 2.5, 3, and added sodium silicate with the rate of 0, 5% of cement content. The results are as follows. As the substitution rate of construction waste wood was increased delay of setting time was also increased, and the batch of adding 5% accelerator had a 13~17 hours faster setting time than non accelerator batch. The compressive strength was lower as wood substitution rate was higher, and as the specific gravity was higher, the strength was also higher. As wood substitution rate was higher, heat conductivity was lower, and as specific gravity was higher, heat conductivity also was higher.

  • PDF

Properties of Porous SiC Ceramics Prepared by Wood Template Method

  • Ha, Jung-Soo;Lim, Byong-Gu;Doh, Geum-Hyun;Kang, In-Aeh;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.308-311
    • /
    • 2010
  • Porous SiC samples were prepared with three types of wood (poplar, pine, big cone pine) by simply embedding the wood charcoal in a powder mixture of Si and $SiO_2$ at 1600 and $1700^{\circ}C$. The basic engineering properties such as density, porosity, pore size and distribution, and strength were characterized. The samples showed full conversion to mostly $\beta$-SiC with good retention of the cellular structure of the original wood. More rigid SiC struts were developed for $1700^{\circ}C$. They showed similar bulk density ($0.5{\sim}0.6\;g/cm^3$) and porosity (81~84%) irrespective of the type of wood. The poplar sample showed three pore sizes (1, 8, $60\;{\mu}m$) with a main size of $60\;{\mu}m$. The pine sample showed a single pore size ($20\;{\mu}m$). The big cone pine sample showed two pore sizes (10, $80\;{\mu}m$) with a main size of $10\;{\mu}m$. The bend strength was 2.5 MPa for poplar, 5.7 MPa for pine, 2.8 MPa for big cone pine, indicating higher strength with pine.