• Title/Summary/Keyword: basin shape

Search Result 172, Processing Time 0.029 seconds

Runoff Analysis for Urban Unit Subbasin Based on its Shape (유역형상을 고려한 도시 단위 소유역의 유출 해석)

  • Hur, Sung-Chul;Park, Sang-Sik;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.491-501
    • /
    • 2008
  • In order to describe runoff characteristics of urban drainage area, outflow from subbasins divided by considering topography and flow path, is analyzed through stormwater system. In doing so, concentration time and time-area curve change significantly according to basin shape, and runoff characteristics are changed greatly by these attributes. Therefore, in this development study of FFC2Q model by MLTM, we aim to improve the accuracy in analyzing runoff by adding a module that considers basin shape, giving it an advantage over popular urban hydrology models, such as SWMM and ILLUDAS, that can not account for geometric shape of a basin due to their assumptions of unit subbasin as having a simple rectangular form. For subbasin shapes, symmetry types (rectangular, ellipse, lozenge), divergent types (triangle, trapezoid), and convergent types (inverted triangle, inverted trapezoid) have been analyzed in application of time-area curve for surface runoff analysis. As a result, we found that runoff characteristic can be quite different depending on basin shape. For example, when Gunja basin was represented by lozenge shape, the best results for peak flow discharge and overall shape of runoff hydrograph were achieved in comparison to observed data. Additionally, in case of considering subbasin shape, the number of division of drainage basin did not affect peak flow magnitude and gave stable results close to observed data. However, in case of representing the shape of subbasins by traditional rectangular approximation, the division number had sensitive effects on the analysis results.

A Study on the Effect of the Inclined Structure on the Hydraulic Behavior Index within Sedimentation basin (경사 구조물이 침전지내 수리거동 Index에 미치는 영향)

  • Lim, Seong-Ho;Hwang, Jun-Sik;Park, No-Suk;Kim, Seong-Su;Lim, Kyung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.517-526
    • /
    • 2009
  • This research has been conducted to investigate the characteristics of hydraulic behavior within the PAC contactor, the rectangular shape sedimentation basin without inclined tube and the other one with inclined tube those are parts of demonstration plants(capacity : $2,000m^3/d$) in Korea Institute of Water and Environment. As results of tracer tests, the flow within PAC contactor was evaluated to divided into plug flow and dead space distinctly, and characteristics of dead space was close to that of CSTR(Complete/continuous Stirred Tank Reactor). Also, considering Reynolds number, Froude number, Morill, Modal, NCSTR Inex and plug flow/mixed flow fraction, in the case of the rectangular shape sedimentation basin without inclined tube, the characteristics of flow pattern was close to CSTR. On the other hand, in the case of the basin with inclined tube, the region of CSTR decreased precisely compared with the case of no-tube. Until now we have recognized that the inclined hydraulic structure just reduces the surface loading rate within a sedimentation basin. Actually besides, the inclined structure have an important effect on the hydraulic behavior within the basin.

The Effect of Dead Zone on Hydraulic Efficiency in Clearwell (정수지내 사류지역이 수리학적 효율에 미치는 영향 연구)

  • Lee, Seungjae;Shin, Eunher;Kim, Sunghoon;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.177-185
    • /
    • 2007
  • Hydraulic efficiency($T_{10}/T$) in clearwell is often estimated by L/W ratio. However, this estimation is not accurate because other factors which give an effect on hydraulic efficiency such as shape of basin, diffuser wall and intra-basin is ignored. Therefore, in this research, hydraulic efficiency is predicted by the quantitative analysis of dead zone using CFD simulation in a pilot scale clearwell. The results show that the reason why higher L/W ratio increase the hydraulic efficiency is to decrease the dead zone of linear region which is located between baffles. Diffuser wall or intra-basin also affects on hydraulic efficiency with this process. Also, we conclude that hydraulic efficiency can not be reached to 0.8 or higher.

Runoff Analysis due to the Moving Rainstorms on the Nonsymmetric Basin Shapes (비대칭 유역형상에 대한 이동강우의 유출영향분석)

  • Jeon, Min-Woo
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.1-13
    • /
    • 2009
  • The influence of moving rainstorms to runoff was analysed for the nonsymmetric shaped basins using kinematic wave theory. The distribution types of moving rainstorms are uniform, advanced, delayed and intermediate type, the nonsymmetric shaped basins are square, oblong and elongated shape. The runoff hydrographs were simulated and the characteristics were compared with the symmetric shaped basins for the rainstorms moving up, down and cross the basins with various velocities. The smallest differences of peak runoff of symmetric and nonsymmetric basins are appeared in the case of elongated basin, and the largest differences are shown at the oblong basin for the downstream direction. The identical results are shown for the upstream direction. The greatest peak runoff differences are shown in the delayed type rainstorm and the smallest differences are in the advanced type rainstorm for the crossstream direction. The oblong shaped basin generates the longest peak time and shortest peak time for the elongated shape basin.

  • PDF

LAG TIME RELATIONS TO CATCHMENT SHAPE DESCRIPTORS AND HYDROLOGICAL RESPONSE

  • Kim, Joo-Cheol;Kim, Jae-Han
    • Water Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.91-99
    • /
    • 2005
  • One of the most important factors for estimating a flood runoff from streams is the lag time. It is well known that the lag time is affected by the morphometric properties of basin which can be expressed by catchment shape descriptors. In this paper, the notion of the geometric characteristics of an equivalent ellipse proposed by Moussa(2003) was applied for calculating the lag time of geomorphologic instantaneous unit hydrograph(GIUH) at a basin outlet. The lag time was obtained from the observed data of rainfall and runoff by using the method of moments and the procedure based on geomorphology was used for GIUH. The relationships between the basin morphometric properties and the hydrological response were discussed based on application to 3 catchments in Korea. Additionally, the shapes of equivalent ellipse were examined how they are transformed from upstream area to downstream one. As a result, the relationship between the lag time and descriptors was shown to be close, and the shape of ellipse was presented to approach a circle along the river downwards. These results may be expanded to the estimation of hydrological response of ungauged catchment.

  • PDF

Study of Design Flood Estimation by Watershed Characteristics (유역특성인자를 이용한 설계홍수량 추정에 관한 연구)

  • Park, Ki-Bum
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.887-895
    • /
    • 2006
  • Through this research of the analysis on the frequency flood discharges regarding basin property factors, a linear regression system was introduced, and as a result, the item with the highest correlation with the frequency flood discharges from Nakdong river basin is the basin area, and the second highest is the average width of basin and the river length. The following results were obtained after looking at the multi correlation between the flood discharge and the collected basin property factors using the data from the established river maintenance master plan of the one hundred twenty-five rivers in the Nakdong river basin. The result of analysis on multivariate correlation between the flood discharges and the most basic data in determining the flood discharges as basin area, river length, basin slope, river slope, average width of basin, shape factor and probability precipitation showed more than 0.9 of correlation in terms of the multi correlation coefficient and more than 0.85 for the determination coefficient. The model which induced a regression system through multi correlation analysis using basin property factors is concluded to be a good reference in estimating the design flood discharge of unmeasured basin.

Study on the Critical Storm Duration Decision of the Rivers Basin (중소하천유역의 임계지속시간 결정에 관한 연구)

  • Ahn, Seung-Seop;Lee, Hyeo-Jung;Jung, Do-June
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1301-1312
    • /
    • 2007
  • The objective of this study is to propose a critical storm duration forecasting model on storm runoff in small river basin. The critical storm duration data of 582 sub-basin which introduced disaster impact assessment report on the National Emergency Management Agency during the period from 2004 to 2007 were collected, analyzed and studied. The stepwise multiple regression method are used to establish critical storm duration forecasting models(Linear and exponential type). The results of multiple regression analysis discriminated the linear type more than exponential type. The results of multiple linear regression analysis between the critical storm duration and 5 basin characteristics parameters such as basin area, main stream length, average slope of main stream, shape factor and CN showed more than 0.75 of correlation in terms of the multi correlation coefficient.

Analysis of Rainfall Runoff Reduction Effect Depending upon the Location of Detention Pond in Urban Area (도시유역 저류지 위치에 따른 우수유출저감효과 분석)

  • Lee, Jae Joon;Kim, Ho Nyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.535-546
    • /
    • 2008
  • Urbanization results in increased runoff volume and flowrate and shortening in time of concentration, which may cause frequent flooding downstream. The retardation structures are used to eliminate adverse downstream effects of urban stormwater runoff. There are various types of flow retardation measures include detention basin, retention basin, and infiltration basin. In this study, to present a rough standard about location of detention pond for attenuating peak flow of urban area, the runoff reduction effect is analyzed at outlet point when detention pond is located to upstream drainage than outlet. The runoff reduction effects are analyzed under the three assumed basins. These basins have longitudinal shape (SF = 0. 204), concentration shape (SF = 0. 782), and middle shape (SF = 0.567). Numerous variables in connection with the storage effect of detention pond and the runoff reduction effects are analyzed by changing the location of detention pond. To analyze runoff reduction effect by location of single detention pond, Dimensionless Upstream Area Ratio (DUAR) is changed to 20%, 40%, 60%, and 80% according to the basin shape. In case of multiple detention pond, DUAR is changed to 60%, 80%, 100%, 120%, and 140% only under the middle shape basin (SF = 0.567). Related figures and regression equations to determine the location of detention pond are obtained from above analysis of two cases in this study. These results can be used to determine the location of appropriate detention pond corresponding to the any runoff reduction such as storage ratio and peak flow ratio in urban watershed.

Hydraulic Characteristics in Stilling Basin Varying by Position and Shape of End Sill (댐 물넘이의 End Sill 위치 및 형상에 따른 수리특성)

  • Park, Yeong-Wook;Hwang, Bo-Yeon;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.459-462
    • /
    • 2003
  • This study aimed at proposing the optimum design of stilling basins in dam spillways by analyzing hydraulic characteristics for various positions and shapes of end sills through the hydraulic model test. The performance of energy dissipating in the case of vertical shape of end sill was much better than the case of inclined shape. Moreover, we could confirm that no further improvement in hydraulic characteristics at stilling basin as well as downstream of the river were made if the height of end sill was increased up EL 50m, e.g., the proposed design value by computation.

  • PDF

Runoff Analysis due to Moving Storms based on the Basin Shapes (I) - for the Symmetric Basin Shape - (유역형상에 따르는 이동강우의 유출영향분석(I) - 대칭유역형상 -)

  • Han, Kun Yeun;Jeon, Min Woo;Kim, Ji Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.15-25
    • /
    • 2006
  • Using kinematic wave equation, the influence of moving storms to runoff was analysised with a focus on watersheds. Watershed shapes used are the oblong, square and elongated shape, and the distribution types of moving storms used are uniform, advanced and intermediate type. The runoff hydrographs according to the rainfall distribution types were simulated and the characteristics were explored for the storms moving down, up and cross the watershed with various velocity. The shape, peak time and peak runoff of a runoff hydrograph are significantly influenced by spatial and temporal variability in rainfall and watershed shapes. A rain storm moving in the cross direction of channel flow produces a higher peak runoff than in the downstream direction and upstream direction. A peak runoff from a storm moving downstream exceeds that from a storm moving upstream. For storms moving downstream peak time was more delayed than for other storm direction in the case of elongated watershed. The runoff volume and time base of the hydrograph decreased with the increasing storm speed.